QP Co	rde: D 123075 Total Pages: 2 Name:									
	Register No.									
	SECOND SEMESTER (CUFYUGP) DEGREE EXAMINATION, APRIL 2025									
	BCA									
	BCA2CJ103 / BCA2MN102 - Numerical Analysis and Optimization Techniques									
2024 Admission onwards										
Maxin	Maximum Time : 2 Hours Maximum Marks :70 Section A									
All Questions can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)										
1	State Simpson's (1/3) rd rule.									
2	State the formula for bisection method									
3	Write Newton Raphson formula.									
4	Write the equation of Lagrange's interpolating polynomial through (x_0,y_0) and (x_1,y_1)									
5	Using Trapezoidal rule find $\int_0^2 x^2 dx$									
6	Write Simpson's Three- Eighths Rule formula.									
7	What are the functions of O.R?									
8	What are unbalanced transportation problems?									
9	What are slack and surplus variables?									
10	Write short notes on LCM.									
	Section B									
All Questions can be answered. Each Question carries 6 marks (Ceiling : 36 Marks)										
11	Given $f(2) = 5$, $f(2.5) = 6$. Evaluate $f(2.2)$ using Lagrange's method									
12	Use Newton-Raphson method to find a root of the equation $x^3 - 2x - 5 = 0$									
13	Using Newton's forward interpolation formula find the cubic polynomial for the data									
	X: 0 1 2 3									
	Y: 1 2 1 10									
14	Find the approximate value of $\int_0^1 \frac{1}{1+x} dx$ using Trapezoidal rule									
15	AB Ltd manufactures two products A and B. To manufacture one unit of A, two units of material X and 4 units of material Y are required. To manufacture one unit of B, three units of X and two units of Y is required. As the raw material X is in short supply, not more than 16 units of X can be used. At least 16 units of material Y must be used in order to meet									

	committed sales of A and B. Cost per unit of material X and Y are Rs. 2.5 and Rs. 25 respectively. You are required to formulate mathematical model								
16	Solve the linear programming problem graphically								
10									
				Ma	ax z = 4x	$x_1 + 3x_2$			
	Subject to the constraints $2x_1 + x_2 \le 1000$								
	3800								
				_	$\leq 400, x_2$				
					$x_1 \ge 0, x_2$				
17	Distinguish between Assignment problem and Transportation problem.								
18	Find the initial solution of the following Transportation problem using Vogel's								
	Approximation method								
		D_1	D_2	D_3	D_4	Supply			
	O_1	190	300	500	100	70			
	O_2	700	300	400	600	90			
	O_3	400	100	600	200	180			
	Demand	50	80	70	140				
				Se	ection C				
		Answer a	ny ONE .E	ach Questi	on carries	10 marks (1x10=10 Marks)			
19	Use the sin	nplex met	hod to so	lve LPP					
19	$Max z = 3x_1 + 2x_2$								
	Subject to the constraints :								
					$x_1 + x_2$				
					$x_1 - x_2$				
					x_1 , x_2				
20	Solve the fo	Solve the following assignment problem for minimizing cost							
		I	II	III	IV				
	A	32	26	35	38				
	В	27	24	26	32				
	C	28	22	25	34				
	D	10	10	16	16				