Q.P Code D 123240	Total Pages	3	Na	ne	604818	
			Reg	gister No.		
SECOND SEMESTER (CUFYUGP) DEGREE EXAMINATION, APRIL 2025						
MATHEMATICS						
MAT2MN105 Vector Spaces and Linear Transformations						
2024 Admission Onwards						
Maximum Time :2 Hours			Ma	Maximum Marks :70		

	Section A			
All Question can be answered. Each Question carries 3 marks (Ceiling: 24 Marks)				
1	Let V be a vector space, \mathbf{u} a vector in V, and k a scalar; then: prove that $-1\mathbf{u} = -\mathbf{u}$			
2	Show that set of all polynomials of the form $a_0 + a_1x + a_2x^2 + a_3x_3$ in which a_0, a_1, a_2 , and			
	a_3 are rational numbers is not a subspace of P_3			
3	Define the terms			
	(a) Linear combination of vectors			
	(b) Corner of contains			
	(b) Span of vectors			
4	Show that the functions $1, x, e^x$ are linearly independent vectors.			
5	In any vector space a set that contains the zero vector must be linearly dependent. Explain			
	why this is so.			
6	Use matrix multiplication to find the reflection of (a, b) about the line $y = x$			
7	Let $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the x-axis, and $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about			
	the line $y = x$. Determine whether the operators T_1 and T_2 commute; that is, whether			
	$T_1 \circ T_2 = T_2 \circ T_1.$			
8	Determine whether the following stated operators commute.			
	"A reflection about the line $y = x$ and an expansion in the x - direction with factor 2."			
9	Let eigen values of a 4×4 matrix A be 1,2,3 and 4. Is A invertible? If so, find eigen values			
	of A^{-1}			
10	Is the matrix $\begin{bmatrix} 2 & 0 \\ 7 & 4 \end{bmatrix}$ diagonalizable? Why?			

604818

Section B

All Question can be answered. Each Question carries 6 marks (Ceiling: 36 Marks))

- Let $V = R^2$ and define addition and scalar multiplication operations as follows: If $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$, then define $\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)$ and if k is any real number, then define $k\mathbf{u} = (ku_1, 0)$. Prove or Disprove that V is a vector space
- Express the vector $6+11x+6x^2$ as a linear combination of $p_1=2+x+4x^2$, $p_2=1-x+3x^2$, and $p_3=3+2x+5x^2$.
- Determine whether the matrices $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$ are linearly independent or are linearly dependent in \mathbf{M}_{22}
- Find a basis for the solution space of the following homogeneous linear system, and find the dimension of that space.

$$x_1 - 3x_2 + x_3 = 0$$

$$2x_1 - 6x_2 + 2x_3 = 0$$

$$3x_1 - 9x_2 + 3x_3 = 0$$

- 15
- (a) Use matrix multiplication to find the contraction of (2, -1, 3) with factor k = 1/4
- (b) Use matrix multiplication to find the dilation of (2, -1, 3) with factor k = 2.
- 16 Let $T_1(x_1, x_2, x_3) = (4x_1, -2x_1 + x_2, -x_1 3x_2)$ and $T_2(x_1, x_2, x_3) = (x_1 + 2x_2, -x_3, 4x_1 x_3)$.
 - (a) Find the standard matrices for T_1 and T_2 .
 - (b) Find the standard matrices for $T_2 \circ T_1$ and $T_1 \circ T_2$
- Let $A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & -4 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Confirm that P diagonalizes A, and then compute each of the following powers of A. Also find A^{1250}
- Find the eigenvalues and the corresponding eigenspaces of the stated matrix operator on \mathbb{R}^2 .
 - (a) Dilation with factor k(k > 1).
 - (b) Orthogonal projection onto the x- axis

604818

Section C

604818

Answer any ONE. Each Question carries 10 marks (1x10=10 Marks))

- In each part, find a basis for the given subspace of \mathbb{R}^3 , and state its dimension.
 - (a) The plane 3x 2y + 5z = 0.
 - (a) The plane x y = 0.
 - (a) All vectors of the form (a, b, c), where b = a + c
- Find bases for the eigenspaces of $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$