			60488
QP CODE:D 123041		Total Pages: 2	Name:
			Register No.
	SECOND SEMESTE	R (CUFYUGP) DEGREE E	EXAMINATION APRIL 2025
		(PHYSICS)	
	PHY2MN10	5 Fluid Mechanics and Thermod	lynamics
		2024 Admission onwards	\
Maxir	num Time :2 Hours		Maximum Marks :70
		Section A	
	All Questions can be a	nswered. Each Question carries 3	marks (Ceiling : 24 Marks)
1	Distinguish between density and relative density of a substance. What is the density of Copper in SI units if its relative density is 8.9?		
2	State Pascal's law. Using this law, explain the working of a hydraulic lift.		
3	State and explain Zeroth law of thermodynamics.		
4	Briefly explain the different modes of transfer of heat.		
5	State the Stefan-Boltzmann law.		
6	What is the principle of a constant-volume gas thermometer?		
7	Distinguish between isochoric and adiabatic processes.		
8	Define internal energy of a system. How is the internal energy of an ideal gas different from that of a real gas?		
9	What is meant by heat capacity of an ideal gas? Write the relation connecting C $_{\rm p}$ and C $_{\rm v}$ for an ideal gas, where the symbols have their usual meanings.		
10	Define entropy. How is it related to randomness?		
		Section B	
	All Questions can be a	nswered. Each Question carries 6	marks (Ceiling : 36 Marks)
11	Derive the continuity equation for the flow of an incompressible fluid. How does this equation get modified for a compressible fluid?		
12	(i) Distinguish between absolute pressure and gauge pressure. (ii) Water stands 12.0 m deep in a storage tank whose top is open to the atmosphere. What are the absolute and gauge pressures at the bottom of the tank?		

D 123041₆₀₄₈₈₃

	014883			
13	A surveyor uses a steel measuring tape that is exactly 50.000 m long at a temperature of 20°C . What will be the length of the tape when the temperature is increased to 35°C ? Given: Coefficient of linear expansion of steel = $1.5 \times 10\text{-}5\text{K}$ -1			
14	Derive an expression for the work done during volume change of a system. Draw the pV diagram for a system undergoing an expansion with varying pressure and explain how the work done is calculated from it.			
15	An ideal gas of volume 1 litre and at a pressure of 6 atm expands adiabatically till the pressure is reduced to one third of its initial value. If the ratio of heat capacities = 1.4 for the gas and 1 atm = 1.013 x 105 N/m 2 calculate the new volume and the work done during expansion.			
16	Give the Kelvin-Planck and Clausius statements of the second law of thermodynamics. Show that these statements are completely equivalent.			
17	A room contains about 2500 moles of air. Find the change in internal energy of this much air when it is cooled from 35.0°C to 26.0°C at a constant pressure of 1 atm. Treat the air as an ideal gas with ratio of heat capacities = 1.40			
18	A Carnot engine operating between 500 K and 300 K absorbs 1500 J from the source. Calculate the efficiency of the engine, heat rejected to 300 K reservoir and the work per cycle.			
Section C				
Answer any ONE. Each Question carries 10 marks (1x10=10 Marks)				
19	With necessary theory, derive the Bernoulli's equation. Use the equation to explain the lift on an airplane wing.			
20	a) Draw the energy flow diagram of a heat engine and obtain a mathematical expression for the thermal efficiency of the engine.b) Prove that 'no engine can be more efficient than a Carnot engine operating between the same two temperatures'			