D 114586	(Pages: 3)	Name
		Reg. No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2024

(CBCSS)

Mathematics

MTH 1C 04—DISCRETE MATHEMATICS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Type Questions)

Answer all questions.

Each question carries 1 weightage.

1. Let $(X, +, \cdot, ')$ be a Boolean algebra. Then prove that for all elements x and y of X,

 $x \cdot x = x$.

- 2. Illustrate concise table for a Boolean function through an example.
- 3. Define Lattice.
- 4. If G is a simple graph and $\delta \geq k$, then prove that G contains a path of length at least k.
- 5. Give examples of vertex cuts.
- 6. If the girth k of a connected plane graph G is at least 3, then prove that $m \le \frac{k(n-2)}{(k-2)}$.
- 7. Define dfa. Give an example.
- 8. Define nfa. Give an example.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 **D 114586**

Part B (Paragraph Type Questions)

Answer any **two** questions from each module. Each question carries a weightage 2.

MODULE I

- 9. Define a chain in a poset. Prove that the intersection of two chains is a chain.
- 10. State and prove De Morgan's laws in a Boolean algebra.
- 11. Write the following Boolean function in their disjunctive normal form.

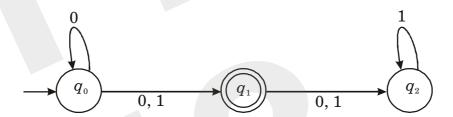
$$f(x_1, x_2, x_3) = (x_1 + x_2') x_3' + x_2 x_1' (x_2 + x_1' x_3)$$

MODULE II

- 12. Prove that the sum of the degrees of the vertices of a graph is equal to twice the number of its edges.
- 13. Prove that a connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
- 14. Prove that a simple graph is a tree if and only if any *two* distinct vertices are connected by a unique path.

Module III

15. Convert the nfa in the following figure into an equivalent deterministic machine.



- 16. Find a dfa that accepts all the strings on $\{0,1\}$, except those containing the substring 001.
- 17. Show that the language

$$L\left\{awa:w\in\left\{a,b\right\}^*\right\}.$$

is regular.

 $(6 \times 2 = 12 \text{ weightage})$

3 D 114586

Part C (Essay Type Questions)

Answer any **two** questions. Each question carries a weightage 5.

- 18. Let $(X, +, \cdot, ')$ be a finite Boolean algebra. Then prove the following :
 - (i) every non-zero element of X contains at least one atom.
 - (ii) every two distinct atoms of X are mutually disjoint.
- 19. Prove that the set Aut(G) of all automorphisms of a simple graph G is a group with respect to the composition \circ of mappings as the group operation.
- 20. If the simple graphs G_1 and G_2 are isomorphic, then prove that $L\left(G_1\right)$ and $L\left(G_2\right)$ are isomorphic.
- 21. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite accepter, and let G_M be its associated transition graph. Then prove that for every $q_i, q_j \in Q$, and $w \in \Sigma^+$, $\delta^*(q_i, w) = q_j$ if and only if there is in G_M a walk with label w from q_i to q_j .

 $(2 \times 5 = 10 \text{ weightage})$