D 122468	(Pages : 4)	Name		
		Reg. No		

SECOND SEMESTER M.Sc. DEGREE REGULAR/SUPPLEMENTARY EXAMINATION, APRIL 2025

(CBCSS)

Chemistry

CHE2C05—GROUP THEORY AND CHEMICAL BONDING

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Assign Schoenflies symbol of point group for :
 - (a) CH_2Cl_2 .

- (b) Cyclohexane (chair form),
- 2. Generate 3×3 matrices for :
 - (a) C_3 .

- (b) S_3 .
- 3. Distinguish between degenerate and nondegenerate representations with examples.
- 4. State rules for assigning Mulliken's symbol for symmetry species.
- 5. You are given $\int_{-a}^{+a} x^3 dx$. Predict whether it is a vanishing integral or not. Justify.
- 6. State Laporte selection rules for electronic transitions.
- 7. Write projection operator \hat{P}_{A_1} for A_1 symmetry under C_2v point group.
- 8. Arrange $\mathrm{O}_2,\mathrm{O}_2^+$ and O_2^- in the increasing order of stability. Justify your answer.

Turn over

2 **D 122468**

- 9. Write spectroscopic term symbol for:
 - (a) C_2 .

- (b) O₂
- 10. The energy of $\pi(\rho i)$ molecular orbitals of benzene are $\alpha+2\beta, \alpha+\beta, \alpha+\beta, \alpha-\beta, \alpha-\beta$ and $\alpha-2\beta$. Find the delocalization energy.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **six** questions. Each question carries a weightage of 2.

- 11. List the symmetry elements and operators associated with D_3h point group. Classify them into different classes of operations.
- 12. Taking the positional coordinates of all atoms of cis butadiene (C_2v) generate a reducible representation (Characters only).
- 13. Derive C_4v characters table.
- 14. Predict IR and Raman active vibrations of $\mathrm{NH}_3.$ Use C_3v character table :

C_3v	E	$2\rho_3$	$3\sigma_v$		
A_1	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	$ m R_z$	
E	2	-1	0	(x, y)	
				(R_x, E_y)	$\left(x^2-y^2,xy\right)(xz,yz)$

15. Find the molecular orbitals of $\mathrm{H}_2\mathrm{O}.$ Use $\mathrm{C}2\mathrm{v}$ character table :

$\mathbf{C}_2 v$	E	$\mathrm{C}_2 z$	σ_{vxz}	$\sigma_{v}^{'}yz$		
$\overline{A_1}$	1	1	1	1	z	x^2, y^2, z^2
${\rm A}_2$	1	1	-1	-1	\mathbf{R}_z	
B_1	1	-1	1	-1	x,R_y	xz
${\rm B}_2$	1	-1	-1	1	y,R_x	yz

3 **D 122468**

- 16. With the help of correlation diagram explain noncrossing rule.
- 17. Find $\pi(\rho i)$ molecular orbitals of cyclo propenyl cation $(C_3H_3)^+$. Use C_3 or D_3h character table :

C_3	E	C_3	${ m C_3}^2$			(2, ()
A	1	1	1	z, Rz	x^2, y^2, z^2	$\varepsilon = e^{i\left(2\pi/3\right)}$
E	(1	3	ε*	(x, y)		
	1	ε*	3	(Rx, Ry)	$\left(x^2 - y^2, xy\right)(xz, yz)$	

18. Find the hybridized orbitals of $\,{\rm C}$ in ${\rm CH}_4$ from quantum mechanical approach.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries a weightage of 5.

19. Find hybridized orbitals of B in $\mathrm{BF}_3.$ Use $\mathrm{D}_3\mathrm{h}$ character table :

D_3h	E	$2C_3$	$3C_2$	σ_h	$2S_3$	$3\sigma_v$		
$A_1^{'}$	1	1	1	1	1	1		$x^2 + y^2, z^2$
$\rm A_2^{'}$	1	1	-1	1	1	-1	R_z	
$\mathbf{E}^{'}$	2	-1	0	2	-1	0	(x, y)	$(x^2 - y^2, xy)$
$A_1^{''}$	1	1	1	-1	-1	-1		
$A_2^{''}$	1	1	-1	-1	-1	1	z	
$\mathbf{E}^{"}$	2	-1	0	-2	1	0	(Rx,Ry)	(xz,yz)

Turn over

D 122468

- 20. Briefly discuss MO theory of bonding as applied to H_2^+ .
- 21. Find the energy of $\pi(\rho i)$ molecular orbitals of butachene using HMO method. Also find any one of the π molecular orbitals.
- 22. Discuss briefly:
 - (a) Block diagonalization.
 - (b) Frost Hückel circle mnemonic device.

 $(2 \times 5 = 10 \text{ weightage})$