D 122512	(Pages : 3)	Name
		Reg. No

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2025

(CBCSS)

Mathematics

MTH2C06—ALGEBRA—II

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries weightage 1.

- 1. Give a maximal ideal of the ring \mathbb{Z} of integers.
- 2. Find a prime ideal of the ring \mathbb{Z}_6 of integers mod 6.
- 3. Verify whether $\sqrt{1+\sqrt{2}}$ is algebraic over the field $\mathbb Q$ of rationals.
- 4. Does there exist a field of 8 elements. Justify your answer.
- 5. Find a nonidentity automorphisms of the field $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$.
- 6. Find the splitting field of the polynomial $x^4 5x^2 + 6$ over \mathbb{Q} .
- 7. Let $K=\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$ and $E=\mathbb{Q}\left(\sqrt{3}\right)$. Find the subgroup of $G\left(K/F\right)$ that correspond to E in the Galois correspondence.
- 8. Verify whether the polynomial x^5-1 is solvable by radicals over $\mathbb Q$.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 **D 122512**

Part B

Answer any **two** questions from each module.

Each question carries weightage 2.

Module I

- 9. Let R be a ring with unity and of characteristic zero. Show that R contains a subring isomorphic to the ring \mathbb{Z} of integers.
- 10. Consider the ring $\mathbb{Z} \times \mathbb{Z}$. Show that $\mathbb{Z} \times \{0\}$ is a prime ideal which is not a maximal ideal.
- 11. Show that $\mathbb{Q}\left(\sqrt{2}\right)$ is an algebraic extension of \mathbb{Q} .

Module II

- 12. Show that every finite extension of a finite field is a simple extension.
- 13. Describe all automorphisms of the splitting field K of $x^3 1 \in \mathbb{Q}[x]$.
- 14. Show that if p(x) is irreducible in F(x) then all zeros of p(x) in \overline{F} have the same multiplicity.

Module III

15. Let $K=\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$ and $G=G\left(K/\mathbb{Q}\right)$ be the Galois group. Find the subfield E of K corresponding to the subgroup :

$$H = \left\{ \sigma \in G : \sigma\left(\sqrt{2}\right) = \left(\sqrt{2}\right) \right\}.$$

of G in the Galois correspondence.

- 16. Show that the 4th cyclotomic polynomial $\phi_4(x)$ is $x^2 + 1$.
- 17. Show that the Galois group of the p^{th} cyclotomic extension of \mathbb{Q} for a prime p is the cyclic group of order p-1.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries weightage 5.

- 18. (a) Let F be a field. Show that every ideal in F[x] is a principal ideal.
 - (b) Show that if p(x) is irreducible in F[x] then the ideal $\langle p(x) \rangle$ is a maximal ideal in F(x).

D 122512

19. (a) Show that every finite extension of a finite field F is an algebraic extension of F.

3

- (b) Find the irreducible polynomial for $\sqrt[3]{1+\sqrt{2}}$ over the field Q of rationals.
- 20. (a) Define splitting field.
 - (b) Let $F \le E \le \overline{F}$ be fields and let E be a splitting field over F. Show that every automorphism of \overline{F} leaving F fixed induces an automorphism of E.
 - (c) Let p(x) be an irreducible polynomial in F[x] and E be the splitting field of p(x). Let σ be an automorphism of E leaving F fixed. Show that if $\alpha \in E$ is a zero of p(x) then $\sigma(\alpha)$ is also a zero of p(x).
- 21. (a) Define Galois group of an extension.
 - (b) Let K be a finite normal extension of a field F. Let λ be the correspondence between intermediate fields of the extension and subgroups of the Galois group G(K/F). Prove that :
 - (i) λ is one to one and onto.
 - $(ii) \quad \text{if E_1, E_2 are intermediate fields such that $E_1 \leq E_2$ then $\lambda E_2 \leq \lambda E_1$.}$

 $(2 \times 5 = 10 \text{ weightage})$