D 122514	(Pages : 3)	Name
		Reg No

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2025

(CBCSS)

Mathematics

MTH 2C 08—TOPOLOGY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1, 2\}, \{1, 3\}\}$. Verify whether τ is a topology on X.
- 2. Let $X = \{1, 2, 3, 4\}$ and $\tau = \{X, \emptyset, \{1\}, \{1, 2\}\}$ be a topology on X. Find the closure of $A = \{1, 2\}$.
- 3. Let X, Y be topological spaces and $X \times Y$ be the product space and let A be open in X. Verify whether $A \times Y$ is open in $X \times Y$.
- 4. Let $X = \mathbb{R}$ with indiscrete topology and $Y = \mathbb{R}$ with usual topology. Let $f : X \to Y$ be defined by f(x) = x for all $x \in X$. Verify whether f is continuous.
- 5. Verify whether \mathbb{R} with usual topology is connected.
- 6. Let $X = \mathbb{R} \{0\}$ with usual topology. Find the connected components of X.
- 7. Let $X = \mathbb{R}$ with cofinite topology. Verify whether X is a T_1 -space.
- 8. Let \mathbb{R} be the real line and $A = \{1, 2\}$ and $B = \{3, 4, 5\}$. Find disjoint open sets G and H such that $A \subseteq G$ and $B \subseteq H$.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 **D 122514**

Part B

Answer any **two** questions from each module.

Each question has weightage 2.

Module I

9. Let \mathcal{B} be a base for a topology τ on X and let $Y \subseteq X$. Show that

$$\mathcal{B}_{V} = \{B \cap Y : B \in \mathcal{B}\}$$

is a base for the subspace topology on Y.

- 10. Let $f: X \to Y$ be a continuous function. Show that $f^{-1}(A)$ is closed in X for all closed sets A of Y.
- 11. Let X, Y be topological spaces and $f: X \to Y$ be a bijection which is continuous and open. Show that f is a homeomorphism.

MODULE II

12. Let $f_i: Y_i \to X$ be a family of functions from topological spaces Y_i to a set X. Show that

$$\mathcal{U} = \left\{ \mathbf{A} \subseteq \mathbf{X} : f_i^{-1} \left(\mathbf{A} \right) \text{ is open in } \mathbf{Y}_i \text{ for all } i \right\}.$$

is the largest topology on X making each f_i continuous.

- 13. Let X be a first countable space and Y be any topological space. Let $f: X \to Y$ be such that if (x_n) is a sequence in X converging to x then $f(x_n)$ converges to f(x). Show that f is continuous.
- 14. Let X be a connected space and $f: X \to Y$ be a continuous surjection. Show that Y is connected.

Module III

- 15. Let X be a finite T_1 -space. Show that X is a discrete space.
- 16. Show that every metric space is a T_2 -space.
- 17. Show that every T_4 -space is a T_3 -space.

 $(6 \times 2 = 12 \text{ weightage})$

3 D 122514

Part C

Answer any **two** questions.

Each question has weightage 5.

- 18. (a) Define second countable space and give an example.
 - (b) Let X be a second countable space. Show that every open cover of X has a countable subcover.
- 19. (a) Define continuous function between two topological spaces.
 - (b) Let X, Y be topological spaces and $f: X \to Y$. Show that the following are equivalent.
 - i) If V is open in Y then $f^{-1}(V)$ is open in X.
 - ii) If A is closed in Y then $f^{-1}(A)$ is closed in X.
 - iii) For a subbase S of Y, $f^{-1}(V)$ is open in X for all $V \in \mathcal{S}$.
- 20. (a) Define connected space.
 - (b) Show that a subspace A of the real line \mathbb{R} is connected if and only if A is an interval.
- 21. (a) Show that every regular Lindeloff space is normal.
 - (b) Show that every compact Hausdorff space is a T_4 -space.

 $(2 \times 5 = 10 \text{ weightage})$