D 114583	(Pages : 2)	Name
		Reg. No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2024

(CBCSS)

Mathematics

MTH 1C 01—ALGEBRA—I

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

Section A (Short Answer Type Questions)

Answer all questions.
Each question carries a weightage 1.

- 1. Find the order of (2, 3) in the group $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.
- 2. Find the maximum possible order for some element of $\mathbb{Z}_4 \times \mathbb{Z}_6$.
- 3. Let X be a G-set. For $x_1, x_2 \in X$, let $x_1 \sim x_2$ if and only if there exist $g \in G$ such that $gx_1 = x_2$. Prove that \sim is an equivalence relation on X.
- 4. Let $\phi:\mathbb{Z}_{18}\to\mathbb{Z}_{12}$ be the homomorphism, where ϕ (1) = 10. Find $\textit{Ker }\phi$.
- 5. Show that \mathbb{Z} has no composition series.
- 6. Find the number of Sylow 5-Subgroups of a group of order 15.
- 7. Give a presentation of \mathbb{Z}_4 involving two generators.
- 8. Find the multiplicative inverse of i + 2j + 2k in the skew field of quaternions.

 $(8 \times 1 = 8 \text{ weightage})$

Section B (Paragraph Type Questions)

Answer any **two** questions from each module. Each question carries a weightage 2.

Module I

- 9. Let M be a maximal normal subgroup of a group G. Show that G/M is simple.
- 10. Describe all abelian groups up to isomorphism of order 360.

Turn over

11. Show that A_n is a normal subgroup of S_n and compute S_n/A_n .

Module II

- 12. Find all composition series of $S_3 \times \mathbb{Z}_2$.
- 13. Let G be a group containing normal subgroups H and K such that $H \cap K = \{e\}$ and $H \vee K = G$. Show that $G \simeq H \times K$.
- 14. Show that $\{2, 3\}$ is a basis for \mathbb{Z}_6 .

Module III

- 15. Find the sum and the product of the polynomials f(x) = 4x 5 and $g(x) = 2x^2 4x + 2$ in $\mathbb{Z}_8[x]$.
- 16. Let F be a field and $f(x) \in F[x]$ be of degree 2 or 3. Show that f(x) is irreducible if and only if f(x) has no zero in F.
- 17. Prove that $\mathbb{Z}/5\mathbb{Z} \simeq \mathbb{Z}_5$.

 $(6 \times 2 = 12 \text{ weightage})$

Section C (Essay Type Questions)

Answer any **two** questions.

Each question carries a weightage 5.

- 18. Prove that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and isomorphic to \mathbb{Z}_{mn} if and only if $\gcd(m, n) = 1$.
- 19. (a) State and prove Cauchy's Theorem.
 - (b) Prove that no group of order 20 is simple.
- 20. (a) If N is a normal subgroup of a group G and H is any subgroup G, then prove that $H \lor N = HN = NH$.
 - (b) Prove that every group is a homomorphic image of a free group.
- 21. (a) Prove that an element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if x a is a factor of f(x) in F[x].
 - (b) Prove that $25x^5 9x^4 3x^2 12$ is irreducible over \mathbb{Q} .

 $(2 \times 5 = 10 \text{ weightage})$