D 111192	(Pages : 3)	Name	
		Reg. No	

THIRD SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTH 3E 03—MEASURE AND INTEGRATION

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Show that for very complex measureable function f on X, there is a complex measurable function α on X such that $|\alpha| = 1$ and $f = \alpha |f|$.
- 2. Give an example where strict inequality occurs in Fatou's Lemma.
- 3. Prove $\phi(E) = \int_E s d\mu$ is a measure on M, where s is measurable simple function on X and $E \in M$.
- 4. Define Boreal measure, regular measure, and σ-finite measure.
- 5. Let μ and λ be positive measure on a σ algebra \mathcal{M} . Is is true that "Either μ is absolutely continuous with respect to λ or λ is absolutely continuous with respect to μ . Justify your answer.
- 6. Prove that the Lebesgue decomposition of a measure is unique.
- 7. Define measurable rectangle, elementary sets and monotone class.
- 8. True or False. Product of two complete measure is complete. Justify your answer.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit. Each question has weightage 2.

Unit 1

- 9. State and prove Lebesgue's Dominated Convergence Theorem.
- 10. Prove the uniqueness of the existence of positive measure in Riesz Representation Theorem.
- 11. Let μ be a regular Borel measure on a compact Hausdorff space X; assume $\mu(X)$ = 1. Prove that there is a compact set $K \subset X$ (the carrier or support of μ) such that $\mu(K)$ = 1 but $\mu(H)$ < 1 for every proper compact subset H of K.

Turn over

2 **D** 111192

Unit 2

- 12. State and prove Vitali-Caratheodory theorem.
- 13. Show that if μ is complex measure on X then $|\mu|(X) < \infty$.
- 14. Suppose μ and λ are measure on a σ -algebra \mathcal{M} , μ is positive, and λ is complex. Then prove that the following two conditions are equivalent :
 - (a) $\lambda \ll \mu$.
 - (b) To every $\epsilon > 0$ corresponds a $\delta > 0$ such that $|\lambda(E)| < \epsilon$ for all $E \in \mathcal{M}$ with $\mu(E) < \delta$.

Unit 3

- 15. Define the *x*-section and *y*-section of a measurable function f(x, y) and show that they are measurable with respect to respective σ -algebra.
- 16. Let (X, \mathcal{S}, μ) and $(Y, \mathcal{J}, \upsilon)$ be σ -finite measure space, and f be an $\mathcal{S} \times \mathcal{J}$ -measurable function on $X \times Y$ write $\phi(x) = \int_Y f_x d\upsilon$ and $\chi(y) = \int_X f^y d\mu$ for $x \in X$ and $y \in Y$. Then prove ϕ is \mathcal{S} -measurable and χ is \mathcal{S} -measurable and

$$\int_{\mathbf{X}} \Phi d\mathbf{\mu} = \int_{\mathbf{Y}} \chi d\mathbf{v} = \int_{\mathbf{X} \times \mathbf{Y}} f d(\mathbf{\mu} \times \mathbf{v}).$$

17. Let m_k denote Lebesgue measure on \mathbb{R}^k . Show that if $k=r+s, r\geq 1, s\geq 1$, then m_k is the completion of the product measure $m_r\times m_s$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 5.

18. (i) Prove that for every real valued non-negative measurable function f(x) on measurable space can be approximated by non-negative monotonically increasing simple measurable functions $s_n(x)$ on measurable space which converges point wise to f(x).

(2 weightage)

(ii) Suppose $\mu(X) < \infty$, $\{f_n\}$ is a sequence of bounded complex measurable functions on X, and $f_n \to f$ uniformly on X. Prove that $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$.

(3 weightage)

19. (i) Let X be a locally compact Hausdorff space in which every open set in σ -compact. Let λ be any positive Borel measure on X such that $\lambda(K) < \infty$ for every compact set K. Then show that μ is regular.

(3 weightage)

(ii) Let $T: \mathbb{R}^k \to \mathbb{R}^k$ be a linear transformation. Then prove that there exists a non-negative real number $\Delta(T)$ such that, for every $E \subset \mathcal{M}, m(T(E)) = (\Delta(T))(m(E))$.

(2 weightage)

552650

3 D 111192

20. Show that if X is a locally compact Hausdorff space, then every bounded linear functional Φ on $C_0(X)$ is represented by a unique regular complex Borel measure μ , in the sense that

$$\Phi f = \int_{\mathbf{X}} f d\mu$$

for every $f \in C_0(X)$. Moreover, the norm of Φ is the total variation of μ :

$$\|\Phi\| = |\mu|(X).$$

21. Let (X, \mathcal{I}) and (Y, \mathcal{J}) be two measurable space. Show that $\mathcal{I} \times \mathcal{I}$ is the smallest monotone class containing all elementary sets.

 $(2 \times 5 = 10 \text{ weightage})$

D 111192-A	(Pages: 5)	Name
		Reg. No

THIRD SEMESTER M.Sc. (CBCSS) (REGULAR/SUPPLEMENTARY) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTH 3E 03—MEASURE AND INTEGRATION

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

[Improvement Candidates need not appear for MCQ part]

Time: 20 Minutes Total No. of Questions: 20 Maximum: 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

2 **D** 111192-A

MTH 3E 03—MEASURE AND INTEGRATION

(Multiple Choice Questions for SDE Candidates)

1.	Let (\mathbb{R}, τ) be a topolog	gical space and gi	ven that $\{1, 2, 3\}$	and $\{2, 4, 6, 8, \ldots\}$	are open sets in the
	given topology (\mathbb{R}, τ) .	Then which of	the following is	necessarily true?	

- (A) $\{1, 3, 4\}$ is an open set (\mathbb{R}, τ) . (B) $\{2, 4, 6, 8, ...\}$ is a closed set in (\mathbb{R}, τ) .
- (C) $\{2\}$ is an open set in (\mathbb{R}, τ) . (D) $\{0, 1, 2, 4, 6, ...\}$ is an open set in (\mathbb{R}, τ) .
- 2. Let X be a non-empty set, (X, τ_1) be the discrete topological space, (X, τ_2) be a topological space, then :
 - (A) There exists no continuous map $f: X \to X$.
 - (B) There exists continuous map $f: X \to X$ depending on τ_2 .
 - (C) There exists exactly one continuous map $f: X \to X$.
 - (D) Any map $f: X \to X$ is continuous.
- 3. Let μ be a positive measure on a σ -algebra \mathfrak{M} . Then :
 - (A) $\mu(\phi) \neq 0$.
 - (B) $\mu(A_1 \cup A_2 \cup ... \cup A_n) < \mu(A_1) + ... + \mu(A_n)$ if $A_1, A_2, ..., A_n$ are pairwise disjoint members of \mathfrak{M} .
 - (C) $A \subset B$ implies $\mu(A) \ge \mu(B)$ if $A, B \in \mathfrak{M}$.
 - (D) $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcup_{n=1}^{\infty} A_n, A_n \in \mathfrak{M}$, and $A_1 \subset A_2 \subset ...$
- 4. Let $\mathbb Q$ be the set of rational numbers then Lebesgue measure of $\mathbb Q \cap [0,1]$ is :
 - (A) 0.

(B) 1.

(C) 2.

- $(D) \infty$.
- 5. Let \mathbb{I} be the set of irrational numbers then measure of $\mathbb{I} \cap [0,1]$ is :
 - (A) 0.

(B) 1.

(C) 2.

- (D) ∞ .
- 6. If $f_n: X \to [0,\infty]$ is measurable, for each positive integer n and μ is a positive measure on σ -algebra $\mathfrak M$ then :
 - (A) $\int_{\mathbf{X}} \left(\lim_{n \to \infty} \inf f_n \right) d\mu = \lim_{n \to \infty} \inf \int_{\mathbf{X}} f_n d\mu.$
 - (B) $\int_{\mathbf{X}} \left(\lim_{n \to \infty} \inf f_n \right) d\mu \neq \lim_{n \to \infty} \inf \int_{\mathbf{X}} f_n d\mu.$

D 111192-A

(C)
$$\int_{\mathbf{X}} \left(\lim_{n \to \infty} \inf f_n \right) d\mu = \lim_{n \to \infty} \sup_{n \to \infty} \int_{\mathbf{X}} f_n d\mu.$$

(D)
$$\int_{\mathbf{X}} \left(\lim_{n \to \infty} \inf f_n \right) d\mu \le \lim_{n \to \infty} \inf \int_{\mathbf{X}} f_n d\mu.$$

- 7. Let $E \in \mathfrak{M}$, μ is a positive measure on \mathfrak{M} and if f(x) = 0 for all $x \in E$, then:

 - $(A) \quad \int_{E} f d\mu = 0, \text{ even if } \mu(E) = \infty. \qquad (B) \quad \int_{E} f d\mu = 0, \text{ only if } \mu(E) < \infty.$

 - (C) $\int_{E} f d\mu$ need not be zero. (D) $\int_{E} f d\mu = 0$, only if $\mu(E) = \infty$.
- 8. Let μ is a positive measure on σ -algebra \mathcal{M} . For $E \in \mathcal{M}$ if $f \geq 0$, then :
 - (A) $\int_{\mathbf{E}} f d\mu < \int_{\mathbf{X}} \mathbf{X}_{\mathbf{E}} f d\mu$.
- (B) $\int_{\mathbf{E}} f d\mu > \int_{\mathbf{X}} \mathbf{X}_{\mathbf{E}} f d\mu$.
- (C) $\int_{\mathbb{E}} f d\mu = \int_{\mathbb{X}} X_{\mathbb{E}} f d\mu$.
- (D) $\int_{\mathbb{R}} f d\mu \neq \int_{\mathbb{X}} X_{\mathbb{E}} f d\mu$.
- 9. Choose the false statements:
 - (A) A set E in a measure space (with measure μ) is said to have σ -finite measure if E is a countable union of set E, with $\mu(E_i) < \infty$.
 - (B) A set E in a topological space is called σ-compact if E is a union of compact sets.
 - (C) Every σ -compact set has σ -finite measure.
 - (D) If $E \in \mathfrak{M}$ and E has σ -finite measure, then E is inner regular.
- 10. If $A \subset \mathbb{R}^1$ and every subset of A is Lebesgue measurable then :
 - (A) $m(A) = \infty$.

(B) m(A) = 0.

(C) $0 < m(A) < \infty$.

- (D) m(A) > 1.
- 11. I. Every set of positive measure has a non-measurable subset.
 - II. Let E be the cantor set, $E \subset \mathbb{R}^1$ then m(E) = 0, where m is the Lebesgue measure.
 - (A) Both I and II are true.
- (B) Both I and II are false.
- (C) I is true and II is false.
- (D) I is false and II is true.
- 12. Let \mathfrak{M} be a σ -algebra in a set X and $E \in \mathfrak{M}$, then:
 - (A) $|\mu|(E) \neq |\mu(E)|$.

(B) $|\mu|(E) = |\mu(E)|$.

(C) $|\mu|(E) \ge |\mu(E)|$.

(D) $|\mu|(E) \le |\mu(E)|$.

Turn over

- 13. If μ is a positive measure and $|\mu|$ is the total variation of μ , then :
 - (A) $|\mu| \neq \mu$.

(B) $|\mu| = \mu$.

(C) $|\mu| < \mu$.

- (D) $|\mu| > \mu$.
- 14. Let X be a set, $\mathfrak M$ be a σ -algebra on X and μ be a real measure on $\mathfrak M$. For every partition (E_i) of any set $E\in \mathfrak M$, define $|\mu|(E)=\sup_{i=1}^\infty |\mu(E_i)|$. Then choose the incorrect statement:
 - (A) $\frac{|\mu| + \mu}{2}$ is a positive measure on \mathfrak{M} .
 - (B) $\frac{|\mu| \mu}{2}$ need not be a positive measure on \mathfrak{M} .
 - (C) $\frac{|\mu| + \mu}{2}$ is called positive variation of μ .
 - (D) $\frac{|\mu|-\mu}{2}$ is called negative variation of μ .
- 15. Let λ_1 , λ_2 are two measures on a σ -algebra $\mathfrak M$ and A, B be two disjoint sets in $\mathfrak M$. Also given that λ_1 is concentrated on A and λ_2 is concentrated on B. Then:
 - I. λ_1 and λ_2 are mutually singular.
 - II. $|\lambda_1|$ and $|\lambda_2|$ are mutually singular.
 - (A) Both I and II are true.
- (B) Both I and II are false.
- (C) I is true and II is false.
- (D) I is false and II is true.
- 16. Suppose μ is positive measure on a σ -algebra $\mathfrak{M}, g \in L^1(\mu)$, and $\lambda(E) = \int_E g \, d\mu$ for $E \in \mathfrak{M}$. Then:
 - (A) $|\lambda|(E) \neq \int_{E} |g| d\mu$, for $E \in \mathfrak{M}$.
 - (B) $|\lambda|(E) \le \int_E |g| d\mu$, for $E \in \mathfrak{M}$.
 - (C) $|\lambda|(\mathbf{E}) \ge \int_{\mathbf{E}} |g| d\mu$, for $\mathbf{E} \in \mathfrak{M}$.
 - (D) $|\lambda|(E) = \int_{E} |g| d\mu$, for $E \in \mathfrak{M}$.

D 111192-A

17. Let μ be a positive measure, suppose $1 \le p \le \infty$, and let q be the exponent conjugate to p. If $g \in L^q(\mu)$ and $\phi_g(f) = \int_X fg \ d\mu$ then choose incorrect statement :

5

- (A) ϕ_{σ} is bounded linear functional on $L^{p}(\mu)$.
- (B) ϕ_g has norm atmost $\|g\|_q$.
- (C) For $p = \infty$ all bounded linear functionals on $L^p(\mu)$ have the form $\phi_g(f) = \int_X fg \ d\mu$.
- (D) For $1 all bounded linear functionals on <math>L^p(\mu)$ have the form $\phi_g(f) = \int_X fg \ d\mu$.
- 18. Let X be a locally compact Hausdorff space. Choose the incorrect statement :
 - (A) $C_c(X)$ is a dense subspace $C_0(X)$, relative to supnorm.
 - (B) Bounded linear functional on $C_c(X)$, has an extention to a bounded linear function on $C_0(X)$.
 - (C) Bounded linear functional on $C_c(X)$, has more than two extension to a bounded linear function on $C_0(X)$.
 - (D) $C_0(X)$ is a Banach space.
- 19. Let (X, \mathcal{S}, μ) and $(Y, \mathcal{J}, \lambda)$ are σ -finite measure spaces. Suppose that $Q \in \mathcal{S} \times \mathcal{J}$ and define $\phi(x) = \lambda(Q_x), \psi(y) = \mu(Q^y)$ for all $x \in X, y \in Y$. Then :
 - (A) ϕ is \mathcal{J} -measurable and ψ is \mathcal{J} -measurable.
 - (B) ϕ is \mathcal{J} -measurable and ψ is \mathcal{J} -measurable.
 - (C) ϕ is \mathcal{I} -measurable and ψ is \mathcal{I} -measurable.
 - (D) ϕ is \mathcal{S} -measurable and ψ is \mathcal{S} -measurable.
- 20. Let (X, \mathcal{S}, μ) and $(Y, \mathcal{J}, \lambda)$ are σ -finite measure spaces. Suppose that $Q \in \mathcal{S} \times \mathcal{J}$ and define $(\mu \times \lambda)(Q) = \int_X \lambda(Q_x) d\mu(x) = \int_X \mu(Q^y) d\lambda(y)$.

I: $\mu \times \lambda$ is σ-finite.

II: $\mu \times \lambda$ countable subadditive not countable additive on $\mathcal{G} \times \mathcal{J}$.

- (A) Both I and II are true.
- (B) Both I and II are false.
- (C) I is true and II is false.
- (D) I is false and II is true.