D 111193	(Pages : 3)	Name
		Reg. No

THIRD SEMESTER M.Sc. (CBCSS) (REGULAR/SUPPLEMENTARY) DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTH 3E 04—PROBABILITY THEORY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question has weightage 1.

1. Every r.v. has a unique distribution function. Is the converse true? Justify.

2. Let X be a discrete r.v. with pmf $P\left[X = \frac{(-1)^{j+1}3^j}{j} = \frac{2}{3j}; j = 1, 2, ...\right]$. Find E(X) if it exists.

- 3. State the Markov inequality and deduce the Chebyshev's inequality from it.
- 4. Define a mixture distribution. If $F_X(x) = 1 p + p(1 e^{-\theta x})$, identify the discrete part and continuous part of the decomposition.
- 5. Define independence of random variables.
- 6. If $X_1, X_2, ... X_n$ are iid random variables having exponential distribution with parameter θ , obtain the distribution of $X_{(1)} = \min i\{X_1, X_2, ..., X_n\}$.
- 7. If $X_n \xrightarrow{r} X$, then prove that $X_n \xrightarrow{P} X$. Is the converse true always. Establish.
- 8. Check whether WLLN holds for the sequence $\{X_n, n \ge\}$ of random variables defined as $P(X_n = \sqrt{n}) = \frac{1}{2} = P(X_n = -\sqrt{n}).$

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **six** questions choosing **two** from each unit. Each question has weightage 2.

Unit 1

9. For an integer valued r.v. X, with $P(X = n) = p_n$ and $P(X \le n) = q_n$ so that $\sum_{i=0}^n p_i = q_n$, then prove $\sum_{n=0}^{\infty} P(X \le n) s^n = \frac{P_X(s)}{1-s}$, $|s| \le 1$, where $P_X(s)$ is the probability generating function of X.

Turn over

2 **D** 111193

- 10. Obtain the distribution of X^c if X has a Weibull distribution with $F(x) = 1 e^{-x^c}$, x > 0, c > 0.
- 11. Show that $X_n \xrightarrow{r} X \Rightarrow E|X_n|^r \to E|X|^r$.

Unit 2

- 12. Define the joint central moments (first four) for a bivariate distribution.
- 13. If $f(x,y) = \frac{1}{4}(1+xy)$, |x| < 1, |y| < 1, then show that X^2 and Y^2 are independent but X and Y are not.
- 14. Prove that Var(X) = E[Var(X|Y)] + V[E(X|Y)].

Unit 3

- 15. Prove that $X_n \xrightarrow{P} 0 \leftrightarrow E \left[\frac{|X_n|}{1 + |X_n|} \right] \rightarrow 0$.
- 16. Examine whether WLLN holds for the sequence $\{X_n, n \ge\}$ of i.i.d. random variables defined as $P(X_n = \pm 2^n) = 2^{-(2n+1)}; n \ge 1$ and $P(X_n = 0) = 1 2^{-2n}$.
- 17. State and prove the Linberg-Levy's form of Central Limit Theorem.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 5.

- 18. Prove that a distribution function is symmetric if and only if its characteristic function is real and even.
- 19. The joint pdf of two random variables X and Y is

$$f(x, y) = \begin{cases} 8xy, & 0 \le x < y \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

Find (i) the marginal pdfs of X and Y; (ii) the conditional pds; (iii) Var(X) and Var(Y); (iv) E(Y/X = x), Var(Y/X = x); and (v) E(XY/Y = x).

20. Let X_1 follows Gamma (α, β_1) and X_2 follows Gamma (α, β_2) and are independent with pdfs $f(x_1) = \frac{\alpha^{\beta_1 e^{-ax_1} x_1^{\beta_1 - 1}}}{\Gamma(\beta_1)}$, for $x_1 \ge 0$ and $f(x_2) = \frac{\alpha^{\beta_2 e^{-ax_2} x_2^{\beta_2 - 1}}}{\Gamma(\beta_1)}$, for $x_2 \ge 0$, then what are the

distributions of $X_1 + X_2$ and the distribution of $\frac{X_1}{X_2}$? Are they independent?

552665

3 **D** 111193

- 21. (a) Show that every sequence of independent random variables with uniformly bounded variance obeys the SLLN.
 - (b) Prove that the WLLN holds for the sequence of random variables $\{X_n, n \ge 1\}$ defined as $P(X_n = \pm n^{\alpha}) = \frac{1}{2}$ if and only if $< \frac{1}{2}$.

 $(2 \times 5 = 10 \text{ weightage})$

D 111193-A	(Pages: 5)	Name
		Reg. No

THIRD SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2024

Mathematics

MTH 3E 04—PROBABILITY THEORY

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

[Improvement Candidates need not appear for MCQ part]

Time: 20 Minutes Total No. of Questions: 20 Maximum: 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTH 3E 04—PROBABILITY THEORY

2

 $(Multiple\ Choice\ Questions\ for\ SDE\ Candidates)$

1.	If X and Y are two random variables with means \overline{X} and \overline{Y} respectively, then the expression				
	$E\Big[\big(X-\overline{X}\big)\!\big(Y-\overline{Y}\big)\Big]$ is called :				
	(A)	Variance of X.	(B)	Variance of Y.	
	(C)	Cov (X, Y).	(D)	Moments of X and Y.	
2.	. The random variables X and Y have variances 0.2 and 0.5 respectively. Let $Z=5X-2Y$. The variance of Z is ?				
	(A)	3.	(B)	7.	
	(C)	4.	(D)	5.	
3.	3. The weight of persons in a country is a r.v. of the type :				
	(A)	Continuous r.v.			
	(B)	Discrete r.v.			
	(C)	Neither discrete nor continuou	ıs.		
	(D)	Discrete as well as continuous			
4.	4. Consider a r.v. X that takes values + 1 and -1 with probability 0.5 each. The value of the distribution function $F(x) = at x = -1$ and + 1 are :				
	(A)	0 and 0.5.	(B)	0 and 1.	
	(C)	0.5 and 1.	(D)	0.25 and 0.75.	
5.	. Two random variables X and Y are said to be independent if:				
	(A)	E(XY) = 1.	(B)	E(XY) = 0.	
	(C)	E(XY) = E(X) E(Y).	(D)	E(XY) = any constant value.	
6.		rete r.v. has probability mass fun ld be equal to :	ction	$p(x) = kq^{x}p, p+q=1, x=2, 3, 4,$ the value of	
	(A)	$1/q^2$.	(B)	1/p.	
	(C)	1/q.	(D)	1/pq.	

7. If X and Y two independent variables and their expected values are $\bar{\chi}$ and $\bar{\gamma}$ respectively then:

3

- $(A) \quad E\left\{\left(X-\overline{X}\right)\!\left(Y-\overline{Y}\right)\right\}=0.$
- (B) $E\left\{\left(X-\overline{X}\right)\left(Y-\overline{Y}\right)\right\}=1.$
- $(\mathbf{C}) \quad E\left\{\!\!\left(X-\overline{X}\right)\!\!\left(Y-\overline{Y}\right)\!\!\right\} = C \text{ (constant)}.$
- (D) All the above.

8. If X is a random variable and its p.d.f. if f(x), $E(\log x)$ represents:

- (A) Arithmetic mean.
- (B) Geometric mean.
- (C) Harmonic mean.
- (D) Logarithmic mean.

9. If X and Y are two random variables, the covariance between the variables aX + b and cY + d in terms of COV (X, Y) is :

- (A) COV(aX + b, cY + d) = COV(X, Y).
- (B) $COV(aX + b, cY + d) = abcd \times COV(X, Y).$
- (C) COV(aX + b, cY + d) = ac COV(X, Y) + bd.
- (D) COV(aX + b, cY + d) = ac COV(X, Y).

10. The equation $|\rho| = 1$ holds if and only if there exist constants $a \neq 0$ and b such that

- (A) $P\{aX + b = 1\} = 1$.
- (B) $P\{aX + b = 1\} = 0.$
- (C) $P\{aX + b = 0\} = 1$.
- (D) $P\{\alpha X = 1\} = 1$.

11. If V(x) = 1, then $V(2x \pm 3)$ is :

(A) 5.

(B) 13.

(C) 4.

(D) 10.

12. The correlation coefficient ρ between two r.vs satisfies :

(A) $|\rho| = 1$.

(B) $|\rho| \leq 1$.

(C) $|\rho| < 0$.

(D) $\rho > 1$.

Turn over

13. Let (X, Y) be an RV of the discrete type, then the joint probability mass function of (X, Y) defined as :

(A)
$$p_{ij} = P\{X = x_i, Y = y_j\}, i = 1, 2, ..., j = 1, 2,$$

(B)
$$p_{ij} = P\{X > x_i, Y > y_j\}, i = 1, 2, ..., j = 1, 2, ...$$

(C)
$$p_{ij} = P\{X < x_i, Y < y_j\}, i = 1, 2, ..., j = 1, 2,$$

(D)
$$p_{ij} = P\{X = x_i, Y > y_j\}, i = 1, 2, ..., j = 1, 2,$$

14. If (X, Y) is an RV of the continuous type, then marginal pdf of X is ———.

(A)
$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
.

(B)
$$f_1(x) = \int_{-\infty}^{0} f(x, y) dy$$
.

(C)
$$f_1(x) = \int_{0}^{\infty} f(x, y) dy$$
.

(D) None of the above.

15. Let (X, Y) be an RV of the continuous type, then conditional PDF of X, given Y = y defined as:

(A)
$$f_{X/Y}(x | y) = \frac{f(x, y)}{f_2(y)}$$
.

(B)
$$f_{Y/X}(y \mid x) = \frac{f(x, y)}{f_2(y)}$$
.

(C)
$$f_{X/Y}(x \mid y) = \frac{f(x, y)}{f_1(x)}$$
.

(D)
$$f_{Y/X}(y | x) = \frac{f(x, y)}{f_1(x)}$$
.

16. Two RVs X and Y, of the continuous type are independent if and only if:

(A)
$$f(x, y) = f_1(x) + f_2(y)$$
.

(B)
$$f(x, y) = f_1(x) - f_2(y)$$
.

(C)
$$f(x, y) = f_1(x) / f_2(y)$$
.

(D)
$$f(x, y) = f_1(x)f_2(y)$$
.

17. If f(x) is a probability density function of a continuous random variable then ———.

(A)
$$\int_{-\infty}^{\infty} f(x) \, dx = 0.$$

(B)
$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$

(C)
$$\int_{-\infty}^{\infty} f(x) \, dx > 1.$$

(D)
$$\int_{-\infty}^{\infty} f(x) \, dx < 0.$$

- 18. The expected value of the constant *b* is ————.
 - (A) 0.

(B) 1.

(C) 1/b.

- (D) b.
- 19. If you roll two dice, what is the likelihood that you will roll two numbers that are the same?
 - (A) 1/6.

(B) 2/36.

(C) 1/36.

- (D) 1/12.
- 20. Suppose $X \sim P(\lambda)$. What is the distribution of $Y = \frac{(X \lambda)}{\sqrt{\lambda}}$?
 - $(A) \quad N(\lambda,\,\sigma).$

(B) N(0, 1).

(C) $N(\mu, 1)$.

(D) $N(\lambda, 1)$.