D 111208	(Pages: 2)	Name
		Rag No

THIRD SEMESTER M.Sc. (CBCSS) [REGULAR / SUPPLEMENTARY] EXAMINATION, NOVEMBER 2024

Physics

PHY 3C 11—SOLID STATE PHYSICS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

Each question carries 1 weightage.

- 1. Discuss the Weiss theory of ferromagnetism.
- 2. What are symmetry operations? Name the symmetry elements of a crystal.
- 3. What are the importance of Miller indices?
- 4. Give example of material exhibiting FCC and HCP structure.
- 5. Briefly explain Hall Effect.
- 6. Distinguish between type I and type II superconductors.
- 7. What do you meant by direct band gap semiconductors?
- 8. Discuss the ferroelectric and paraelectric states.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **two** questions.

Each question carries 5 weightage.

- 9. Discuss the formation of allowed and forbidden energy bands on the basis of the Kronig Penny model.
- 10. Derive expression for electron and hole concentration for an intrinsic semiconductors. Use these results to obtain intrinsic carrier concentration.

Turn over

2 D 111208

- 11. Discuss the Debye model of lattice heat capacity. Give drawbacks of the Debye model.
- 12. Describe the Langevin's theory of paramagnetism and obtain an expression for paramagnetic susceptibility. Mention the temperature dependence of susceptibility.

 $(2 \times 5 = 10 \text{ weightage})$

Section C (Essay Questions)

Answer any **four** questions.

Each question carries 3 weightage.

- 13. The energy E(k) of electrons of wave vector k in a solid is given by $E(k) = Ak^2 + Bk^4$, where A and B are constants. Find the effective mass of electrons at $[k] = k_0$?
- 14. Find out reciprocal lattice vectors for a space lattice defined by the following primitive translation vectors:

$$a = 5\hat{i} + 5\hat{j} - 5\hat{k}, b = -5\hat{i} + 5\hat{j} + 5\hat{k}, c = 5\hat{i} - 5\hat{j} + 5\hat{k}.$$

- 15. The critical fields at 6 K and 8 K for a NbTi alloy are 7.616×10^6 and 4.284×10^6 A/m respectively. Determine the transition temperature and the critical field at 0 K.
- 16. The mobility of hole is μ_h = 0.025 m²/Vsec. What would be the resistivity of p-type silicon if the hall coefficient of the sample is 2.25×10^{-5} m³/C?
- 17. Dy³⁺ has outer electronic configuration of $4f^96s^0$. Calculate the magnetic susceptibility for a salt containing one kg mole of Dy³⁺ ions at 300 K.
- 18. The unit cell volume of sodium is 7.93×10^{-29} m³. Calculate the Fermi energy of sodium at absolute zero.
- 19. Derive the Clausius-Mossotti relation by considering the local field effects.

 $(4 \times 3 = 12 \text{ weightage})$