D 121281	(Pages : 2)	Name
		Reg No

FOURTH SEMESTER M.Sc. (CBCSS) [REGULAR/SUPPLEMENTARY] DEGREE EXAMINATION, APRIL 2025

Mathematics

MTH4C15—ADVANCED FUNCTIONAL ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer all the questions. Each question carries 1 weightage.

- 1. Let A be a bounded operator on a Banach space X. Prove that every $\lambda \in C$ with $|\lambda| \ge ||A||$ is a regular point of the operator A.
- 2. Let A be a self-adjoint bounded operator on a Hilbert space H. Prove that two eigen vectors corresponding to distinct eigen values λ_1 , λ_2 of the operator A are orthogonal.
- 3. Let E be a linear space. Let $T: E \to E$ be any operator $E_1 + E_2 = E$ and let P be the projection onto E_1 parallel to E_2 . Show that TP = PT iff E_1 and E_2 are invariant subspaces of T.
- 4. Show that every orthogonal projection P on a Hilbert space H satisfies $O \le P \le I$.
- 5. Define spectral family for a self-adjoint bounded operator on a Hilbert space H.
- 6. Prove that a closed convex set in a Banach space is perfectly convex.
- 7. Let X be a normed space, let $E_0 \hookrightarrow X$ be a subspace of X and let $f_0 \in E_0^*$. Show that there exists $f \in X^*$ such that $f / E_0 = f_0$ and $||f||_{X^*} = ||f_0||_{E^*}$.
- 8. Prove that if the element e-yx of a Banach algebra is invertible then the element e-xy is invertible.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer **six** questions by choosing any **two** questions from each unit. Each question carries a weightage 2.

Unit I

9. Let $A: L_2[0,1] \to L_2[0,1]$ be defined by $(Ax)t = t \cdot x(t), t \in [0,1]$. Determine the spectrum of A.

Turn over

2 D 121281

- 10. Let X be an infinite dimensional Banach space. Show that the identity operator $I: X \to X$ is not compact.
- 11. Let A be in L(H), where H is a Hilbert space. Define the operator B on $H^2 = H \oplus H$ by $B = \begin{pmatrix} 0 & iA \\ -iA^* & 0 \end{pmatrix}$. Prove that B is self adjoint and find $\|B\|$.

Unit II

- 12. Let A be a bounded operator on a Hilbert space H. Show that if A is symmetric and $A \ge 0$, then for any polynomial $p(\lambda)$ with non-negative co-efficients we have $p(A) \ge 0$.
- 13. Let P_1 , P_2 be two orthogonal projections on a Hilbert space H such that $P_1P_2 = P_2P_1 = P$. Show that P is an orthogonal projection and that Im $P = E_1 \cap E_2$ where $E_i = P_iH$ for i = 1, 2.
- 14. State Hilbert theorem on the spectral decomposition of self adjoint bounded operators.

Unit III

- 15. Let E_1 , E_2 be closed subspaces of a Banach space X with $E_1 \cap E_2 = 0$ and $E_1 + E_2 = X$. Show that the projection $P: X \to E_1$, parallel to E_2 is a bounded operator.
- 16. Let X be a Banach space. Show that if X^* is separable, then X is also separable.
- 17. Let \mathcal{A} be a Banach algebra. Prove that if $X \in \mathcal{A}$, ||x|| < 1 then $||(e-x)^{-1} e x|| \le \frac{||x||^2}{1 ||x||}$. $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage 5.

- 18. (a) Show that for every $\in > 0$, there is only a finite number of linearly independent eigen vectors corresponding to eigen values λ_i with $|\lambda_i| \ge \epsilon$.
 - (b) Prove that every complete metric space is a set of second category.
- 19. (a) Let H be a Hilbert space and let A : H \rightarrow H be a bounded operator on H. Prove that $\langle Ax, x \rangle \varepsilon R$ if and only if A is symmetric.
 - (b) State and prove closed graph theorem.
- 20. (a) Let A, B be two bounded operators on a Hilbert space H such that $A \ge 0$, $B \ge 0$ and AB = BA. Show that $AB \ge 0$.
 - (b) State and prove Banach-Steinhans theorem.
- 21. Let K be a closed convex set in a Banach space X and let $x_0 \notin k$. Show that there exists $f \in X^*$ such that $f(x_0) > \sup_{x \in k} f(x)$.

 $(2 \times 5 = 10 \text{ weightage})$