D 121287	(Pages : 3)	Name
		Reg No

FOURTH SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, APRIL 2025

Mathematics

MTH4E09—DIFFERENTIAL GEOMETRY

(2019 Admission onwards)

Time : Three Hours Maximum Weightage : 30

Part A

Answer all questions.

Each questions carries a weightage of 1.

- 1. Sketch the level set $f^{-1}(c)$ at c = 1 for the function $f(x_1, x_2) = x_2$.
- 2. Define the gradient ∇f of a smooth function $f: U \to \mathbb{R}$ where U is open in \mathbb{R}^{n+1} .
- 3. Show that the 2-sphere $x_1^2 + x_2^2 + x_3^2 = 1$ is connected.
- 4. For a parametrized curve α given by $\alpha(t) = (t, t^2)$ find the velocity vector at t = 1.
- 5. Let S be an *n*-surface which contains a straight line segment $\alpha(t) = p + tv$. Show that α is a geodesic in S.
- 6. Sketch a Euclidean parallel vector field on a parametrized curve α .
- 7. Find the normal curvature k(v) of the sphere S given by $x_1^2 + x_2^2 + x_3^3 = r^2$ at a point $p \in S$.
- 8. Define parametrized *n*-surface.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit. Each question carries a weightage of 2.

Unit I

- 9. Show that the set of all vectors at a point p in \mathbb{R}^n form a vector space.
- 10. Let $f: U \to \mathbb{R}$ be a smooth function where $U \subseteq \mathbb{R}^{n+1}$. Show that the gradient at $p \in f^{-1}(c)$ is orthogonal to all vectors tagent to $f^{-1}(c)$ at p.
- 11. Show that the *n*-sphere $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ is an *n*-surface in \mathbb{R}^{n+1} .

2 **D** 121287

Unit II

- 12. Let \overline{X} , \overline{Y} be smooth vector fields along a parametrized curve. Show that $(\overline{X} + \overline{Y}) = \overline{X} + \overline{Y}$.
- 13. Show that the covarient derivative $\bar{\chi}'$ on a *n*-surface S is independent of the orientation on S.
- 14. Let C be a connected oriented plane curve and $\beta: I \to C$ be a unit speed parametrization of C. Show that β is either one to oe or periodic.

Unit III

- 15. Let k(v) be the normal curvature and $k_1(p), k_2(p), ..., k_n(p)$ be the principal curvatures with directions $v_1, v_2, ..., v_n$ of a n-surface. Show that $k(v) = \sum_{i=1}^n k_i(p) \big(v \cdot v_i\big)^2$.
- 16. Show that for $\psi: \mathbb{R}^2 \to \mathbb{R}^4$ defined by

$$\psi(\theta,\phi) = (\cos\theta,\sin\theta,\cos\phi,\sin\phi)$$

the image of ψ is the cartesian product of two circles.

17. State the conditions on an *n*-surface S so that the Gauss map $N: S \to S^n$ is a diffeomorphism.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 18. (a) Define integral curve of a vector field.
 - (b) Let \bar{X} be a smooth vector field on an open set $U \subseteq \mathbb{R}^{n+1}$ and $p \in U$. Show that there exists an open interval I containing 0 and an integral curve $\alpha: I \to U$ of \bar{X} such that $\alpha(0) = p$.
- 19. Let S be a compact connected oriented *n*-surface in \mathbb{R}^{n+1} given as $f^{-1}(c)$ where $\nabla_f(p) \neq 0$ for all $p \in S$. Let $v = (a_1, a_2, ..., a_{n+1}) \in S$. Prove that
 - (a) if $g: \mathbb{R}^{n+1} \to \mathbb{R}$ is defined by

$$g(x_1, x_2,...,x_{n+1}) = a_1x_1 + a_2x_2 + ... + a_{n+1}x_{n+1}$$

then $g^{-1}(c)$ is an *n*-plane parallel to v^{\perp} .

(b) There exists a point $p \in S$ such that $N(p) = \pm v$.

D 121287

- 20. (a) Define differential 1-form.
 - (b) Let $\bar{\chi}$ be a smooth vector field on an open set $U \subseteq \mathbb{R}^{n+1}$. Show that
 - (i) if $w_{\overline{X}}$ is defined by

$$w_{\overline{\mathbf{X}}}(p,v) = \overline{\mathbf{X}}(p) \cdot (p,v) \text{ for } p \in \mathbf{U}, v \in \mathbb{R}^{n+1}$$

3

then $w_{\overline{\mathbf{X}}}$ is a 1-form on U.

(ii) for each 1-form w on U there exists a unique choice of functions $f_i: \mathbf{U} \to \mathbb{R}$ such that

$$w = \sum_{i=1}^{n+1} f_i dx_i.$$

- 21. (a) Define the second fundamental form of an oriented *n*-surface.
 - (b) Show that on each compact oriented n-surface S there exists a point $p \in S$ such that the second fundamental form at p is definite.

 $(2 \times 5 = 10 \text{ weightage})$