D 121290	(Pages : 3)	Name
		Reg. No

FOURTH SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, APRIL 2025

Mathematics

MTH4E12—REPRESENTATION THEORY

(2019 Admission onwards)

Time: Three Hours

Maximum Weightage: 30

Part A

Answer all questions.

Each question carries a weightage 1.

- 1. Let ϕ be the character of a representation of a group G given by $A(x) = I_3$ for each $x \in G$. Find $\phi(x)$.
- 2. Let $G = \{1, a : a^2 = 1\}$ be the cyclic group of order 2 and \mathbb{R}^2 be a G-module given by (x, y)a = (y, x). Verify whether $U = \{(x, 0) : x \in \mathbb{R}\}$ is a submodule.
- 3. Let v be the natural character of the symmetric group S_3 . Find v(a) where a=(12).
- 4. Let ξ be the alternating character of the symmetric group S_3 . Find $\langle \xi, \xi \rangle$.
- 5. Let ρ be the character of the right regular representation of the cyclic group $G = \{1, a, a^2 : a^3 = 1\}$. Find $\rho(1)$.
- 6. Show that every simple character of an abelian group is a linear character.
- 7. Let G be the symmetric group S_3 and H be the subgroup A_3 . Let ϕ be the trivial character of H Find $\phi^G(a)$ where $a \in G$.
- 8. Describe the degrees of the simple characters of the symmetric group S_3 .

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each module. Each question carries a weightage 2.

Module I

9. Let $G = \{1, a, a^2 : a^3 = 1\}$ be the cyclic group of order 3. Describe a G-module structure on \mathbb{R}^3 .

Turn over

2 D 121290

- 10. Let V be a G-module and U be a submodule of V. Show that V/U is also a G-module.
- 11. Let V be a G-module corresponding to the permutation representation of the symmetric group S_3 . Let $\{v_1, v_2, v_3\}$ be a basis of V. Show that the subspace U generated by $v_1 + v_2 + v_3$ is a G-submodule.

Module II

- 12. Show that the number of simple characters of a finite group G is less than or equal to the order of the group.
- 13. Find the number of simple character of the alternating group A_4 .
- 14. Describe the character table of the cyclic group of order 3.

Module III

- 15. Let v be the natural character of S_3 . Show that $\phi(x) = v(x) 1$ is a character of S_3 .
- 16. Let G be a transitive permutation group. Describe the stabilizer of a symbol α . Show that the stabilizer of α is a subgroup of G.
- 17. Define doubly transitive permutation group and give an example.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage 5.

- 18. (a) Define G-homomorphism between G-modules.
 - (b) Let $\theta: V \to U$ be a G-homomorphism between G-modules V and U Show that
 - (i) ker θ is a G-submodule of V.
 - (ii) Im θ is a G-submodule of U.
 - (iii) If V and U are irreducible then θ is either the zero map or an isomorphism.
- 19. (a) Define commutant algebra C(A) of a representation A(x).
 - (b) Let A(x) be a representation of a finite group over an algebraically closed field K and let

$$A(x) \sim diag(A_1(x), A_2(x), ..., A_k(x))$$

where $A_i(x)$ are inequivalent irreducible representation of G. Show that dimension of C(A) is k.

3 **D 121290**

- 20. (a) Let A(x) be a representation of a group G wth character ϕ . Show that
 - (i) $M = \{u \in G : \phi(u) = \phi(1)\}\$ is a normal subgroup of G.
 - (ii) For each $Mx \in G/M$ define $A_u(Mx) = A(x)$. Then A_0 is a representation of G/M.
 - (b) Describe the character table of A_4 .
- 21. (a) State Frobenius Reciprocity theorem.
 - (b) With the usual notations prove that $\left\langle \psi^G, \phi \right\rangle_G = \left\langle \psi, \phi_H \right\rangle_H$ where H is a subgroup of G.
 - (c) Describe the character table of the Alternating group A₅.

 $(2 \times 5 = 10 \text{ weightage})$

D 121290-A	(Pages: 5)	Name
		Reg. No

FOURTH SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, APRIL 2025

Mathematics

MTH 4E 12—REPRESENTATION THEORY

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

Time: 20 Minutes Total No. of Questions: 20 Maximum: 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTH 4E 12—REPRESENTATION THEORY

2

(Improvement candidates need not appear for MCQ part)

- 1. A homomorphism θ from an abstract group to a concrete group is known as:
 - (A) An isomorphism.
- (B) An epimorphism.
- (C) A representation.
- (D) Endomorphism.
- 2. Let A(x) be a faithful representation of a group G. Which of the following is false?
 - (A) A(x) A(y) = A(xy) for every $x, y \in G$.
 - (B) A(x) = I if and only if x = e in G.
 - (C) A(x) = x for all $x \in G$.
 - (D) Ker(A) is a normal subgroup of G.
- 3. Let A(x) be a matrix representation of a group G and let $\phi(x)$ be the character of A(x). Which of the following is true?
 - (A) Equivalent representation have the same character.
 - (B) Equivalent representation need not have the same character.
 - (C) There exists $x, y \in G$ with x and y conjugate in G and $\phi(x) \neq \phi(y)$.
 - (D) None of these.
- 4. Let $V = [e_1, e_2, e_3]$ be a basis of \mathbb{R}^3 and let A denote the matrix representation of the linear map α on \mathbb{R}^3 defined by $\alpha(x,y,z) = (y,x+y,z)$. Then, A is:

$$(A) \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$(B) \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(C)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
.

$$(D) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 5. If $\phi(x)$ and $\phi^{\dagger}(x)$ are the characters of A(x) and $A^{\dagger}(x)$ respectively, then

(B) $\phi^{\dagger}(x) = \overline{\phi(x)}$.

(A) $\phi^{\dagger}(x) = \phi(x)$. (C) $\phi^{\dagger}(x) = \overline{\phi(x^{-1})}$.

(D) $\phi^{\dagger}(x) = \phi(x^{-1}).$

D 121290-A

6. Let
$$G = \begin{cases} \dots, x^{-2}, x^{-1}, x^0 = 1, x^1, x^2, \dots \text{ and } A\begin{pmatrix} x^h \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ h & 1 \end{bmatrix}$$
. Then:

- (A) A(x) is diagonalizable.
- (B) A(x) is completely reducible.
- (C) A(x) is not a representation of G.
- (D) A(x) is lower triangular but not diagonalizable.
- 7. Suppose that U and V are irreducible G-modules over K. Then a G-homomorphism $\theta: V \to U$ is:
 - (A) Always an isomorphism.
 - (B) Always the zero map.
 - (C) Neither zero nor an isomorphism.
 - (D) Either zero or an isomorphism.
- 8. The character of an irreducible representation is called:
 - (A) Trivial character.
- (B) Compound character.
- (C) Simple character.
- (D) None of these.
- 9. Let $\chi^{(1)}, \, \chi^{(2)}, \, \dots \, \chi^{(s)}$ be distinct simple characters of a group of order g. Then,
 - (A) s is always equal to g.
- (B) $s \leq g$.

(C) $s \ge g$.

- (D) s is always different from g.
- 10. Let D be a representation of the group S_3 of order 2 and 1 be the identity in S_3 . Then the character of D(1) is :
 - (A) 1.

(B) 2.

(C) 0.

- (D) -1.
- 11. Let $R(x) = r_{ij}(x)$ be the right regular representation of a G-module $G_{\mathbb{C}}$ with basis vectors $\left[x_1(=1), x_2, \ldots, x_g\right]$ and let $\rho(x)$ be the character of R(x). Then, ρ is the g-tuple :
 - (A) (g, 1, 1, 1, ..., 1).
- (B) (0, 0, 0, 0, ..., g).
- (C) (1, 1, 1, ..., 1, g).
- (D) (g, 0, 0, 0, ..., 0).

Turn over

12.	Let G be a group of order g and le	t the number of elements in a conjugacy class C_{α} ,
	$(1 \le \alpha \le k)$ be denoted by h_{α} . Then, the	e equation $\sum_{\alpha=1}^{k} h_{\alpha} = g$ is called:
	(A) Character relation of first kin	nd.
	(B) Class equation.	
	(C) Character relation of second	kind.
	(D) None of these.	
13.	Let G be an abelian group of order g.	Then for $x \in G$, the conjugacy class of x has :
	(A) $g-1$.	(B) At least two elements.
	(C) Precisely one element.	(D) g elements.
14.	Let A be a periodic matrix over \mathbb{C} . The	nen:
	(A) A is diagonalizable.	(B) A is not diagonalizable.
	(C) A is nilpotent.	(D) A = I.
15.		be two column vectors of character table of D_4 . Then, x
	is:	
	(A) -1.	(B) -2 .
	(C) 0.	(D) 1.
16.	Which of the following is in A_6 ?	
	(A) (123)(56).	(B) (1256).
	(C) (56).	(D) (1234)(56).
17.	The set of all elements of G that com	mute with x is called the :
	(A) Centraliser of x .	(B) Commutator subgroup generated by x .
	(C) Stabilizer of x.	(D) Normalizer of x .
18.	Let χ denote the permutation characteristics	ter of A_5 . Then $\chi((123))$ is:
	(A) – 1.	(B) 2.
	(C) 3.	(D) 1.

- 19. Which of the following is true?
 - (i) A: 1, (12)(34), (13)(24), (14)(23) is transitive.
 - (ii) B: 1, (12), (34), (12) (34) is transitive.
 - (A) Both (i) and (ii).
- (B) (ii) but not (i).

(C) Only (i).

- (D) Neither (i) nor (ii).
- 20. Let G be a doubly transitive group with natural character v(x), then the function v(x) 1 is:
 - (A) Always compound.
- (B) Always simple.
- (C) Sometimes compound.
- (D) None of these.