FOURTH SEMESTER M.Sc. (CBCSS) (REGULAR/SUPPLEMENTARY) DEGREE EXAMINATION, APRIL 2025

Mathematics

MTH4C16—OPTIMIZATION TECHNIQUES IN OPERATIONS RESEARCH (2019 Admission onwards)

Time : Three Hours Maximum Weightage : 30

Part A

Answer **all** the questions. Each questions carries a weightage of 1.

- 1. What are the conditions that are to be satisfied by a network?
- 2. Define compression limit of an activity.
- 3. In how many ways can 5 jobs be performed on 4 machines?
- 4. What is Bellman's optimality principle?
- 5. Test the definiteness of the function $f(X) = x_1^2 + x_2^2 + x_3^2 2x_1x_2$.
- 6. Show that a convex function is unimodal.
- 7. Find the lower bound for $f(x) = x^{-4} + 4x^3 + 4x$, x > 0.
- 8. What is the general form of an unconstrained posynomial minimization problem?

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each module. Each question carries a weightage of 2.

Module I

- 9. Construct a network where the activities satisfy the requirements: (i) A and B are the first activities of the project to start simultaneously; (ii) A and B precede C; (iii) B precedes D and E; (iv) A and B precede F; (v) F and D precede G and H; (vi) C and G precede I; (vii) E, H and I are the terminal activities. The duration of activities A, B, C, D, E, F, G, H, and I are 2, 3, 5, 2, 7, 4, 6, 11 and 3 respectively.
- 10. Describe the Stepping step method in project management.
- 11. Write the algorithm for the sequencing problem of n jobs and m machines.

Module II

12. Distinguish between Backward dynamic programming and Forward dynamic programming.

Turn over

2 **D** 121282

- 13. Find the stationary points and classify them for $f(X) = 2 + 2x_1 + 3x_2 x_1^2 x_2^2$.
- 14. Describe the eigenvalue test for finding the definiteness of a quadratic form.

Module III

- 15. Describe the Dichotomous search method.
- 16. What are the limitations of Fibonacci search method?
- 17. Define degree of difficulty of a geometric programming problem. How does it explain the existence of solution of a problem?

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

18. Consider the project for which details are mentioned below:

Activity	Normal duration	Normal cost	Crash duration	Crash cost
(i, j)	 T_n	\mathbf{C}_n	T_c	C_c
(1, 2)	 15	600	12	1200
(1, 3)	 8	700	5	1600
(2, 5)	 12	750	6	1500
(3, 4)	 15	650	12	1400
(3, 5)	 18	700	13	1450
(4, 5)	 8	500	5	950

Find by FF limt method the minimum cost schedule, if the project is to be completed in 28 days.

- 19. (a) Let f(X) be a convex function defined over a convex set S in \mathbb{R}^n , the *n*-dimensional Euclidean space. Then prove that the local minimum is the global minimum of f(X) over S.
 - (b) Prove that a set $S = \{X : g_i(X) \le 0, X \ge 0\}$ of feasible solutions of the general convex non-linear programming problem is a convex set.
- 20. (a) Define separable function and give an example for a separable function.
 - (b) Write the dual of the problem:

Minimise
$$f(X) = -4x_1 - 2x_2 + x_1^2 + x_2^2$$

subject to $2x_1 - x_2 \le 7$
 $-x_1 + x_2 \le -2$
 $x_1, x_2 \ge 0$.

- 21. (a) Explain the Gravel box design problem.
 - (b) Find the maximum of f(x) = x(1.5 x) in the interval [0, 1] to within 10 % of the exact value. Take $\delta = 0.001$.

 $(2 \times 5 = 10 \text{ weightage})$

D 121282-A	(Pages : 4)	Name
		Reg. No

FOURTH SEMESTER M.Sc. (CBCSS) (REGULAR/SUPPLEMENTARY) DEGREE EXAMINATION, APRIL 2025

Mathematics

MTH4C16—OPTIMIZATION TECHNIQUES IN OPERATIONS RESEARCH

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

[Improvement Candidates need not appear for MCQ part]

Time: 20 Minutes Total No. of Questions: 20 Maximum: 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTH4C16—OPTIMIZATION TECHNIQUES IN OPERATIONS RESEARCH

(Multiple Choice Questions for SDE Candidates)

1. The time required by each job on each machine is called ———— time.

	(A)	Elapsed.	(B)	Idle.
	(C)	Processing.	(D)	Average.
2.	CPM n	neans ———.		
	(A)	Critical Path Method.	(B)	Cost Project Minimization.
	(C)	Cost Project Maximsation.	(D)	Critical Project Management.
3.	The gr	aphical representation of project of	perati	ons:
	(A)	Critical path.	(B)	Activities.
	(C)	Techniques.	(D)	Network.
4.	The slo	ope of crashing an activity is given l	oy:	
	(A)	$\frac{\mathbf{C}_c + \mathbf{C}_n}{\mathbf{T}_n + \mathbf{T}_c}.$	(B)	$rac{\mathrm{C}_c-\mathrm{C}_n}{\mathrm{T}_n}.$
	(C)	$\frac{\mathbf{C}_c - \mathbf{C}_n}{\mathbf{T}_n - \mathbf{T}_c}.$	(D)	$rac{\mathrm{C}_c-\mathrm{C}_n}{\mathrm{T}_n}.$ $rac{\mathrm{C}_c}{\mathrm{T}_n-\mathrm{T}_c}.$
5.	In the	network of the project for which th	e acti	vities E precedes G and H means:
	(A)	$E \to G \to H$.	(B)	$H \to G \to E$.
	(C)	$E \to G, E \to H.$	(D)	$G \to E, H \to E.$
6.	the ren			ver the initial state and initial decision are nal policy with regard to the state resulting
	(A)	Forward recursion.	(B)	Backward recursion.

(D) Bellman's optimality.

- 7. A quadratic form X^TAX is said to be positive definite if:
 - $(A) \quad X^TAX > 0 \ \forall X \neq 0.$

(C) Dynamic method.

- $(B) \quad \boldsymbol{X}^T \boldsymbol{A} \boldsymbol{X} \geq \boldsymbol{0} \ \forall \boldsymbol{X} \neq \boldsymbol{0} \ at least \ one \ \boldsymbol{X} \neq \boldsymbol{0}, \ \boldsymbol{X}^T \boldsymbol{A} \boldsymbol{X} = \boldsymbol{0}.$
- $(C) \quad X^TAX < 0 \ \forall X \neq 0.$
- $(D) \quad X^TAX \leq 0 \ \forall X \neq 0 \ at least \ one \ X \neq 0, \ X^TAX = 0.$

8. If $f(X) = x_1^2 - (x_2 - x_3)^2$ then f is	s:
--	----

(A) Positive definite.

- (B) Negative definite.
- (C) Positive semi definite.
- (D) Indefinite.
- 9. The Assembly line scheduling and longest common subsequence problems are an example of:

3

- (A) Greedy algorithm.
- (B) Branch and bound method.
- (C) Geometric method.
- (D) Dynamic algorithm.
- 10. For the matrix $\begin{bmatrix} -3 & -5 & 3 \\ -5 & 2 & 2 \\ 3 & 2 & -3 \end{bmatrix}$ we have D_2 is :
 - (A) 32.

(B) -31.

(C) 16.

- (D) -10.
- 11. A necessary conditions for $f(X) \in \mathbb{C}^2$ to have stationary points is that :
 - (A) $\nabla f(x) = 0$.

(B) $\nabla f(x) \neq 0$.

(C) $\nabla f(x) > 0$.

- (D) $\nabla f(x) < 0$.
- 12. For a quadratic X^TAX if A is indefinite then the point X^* is called:
 - (A) Node.

(B) Maximum.

(C) Saddle point.

- (D) Minimum.
- 13. Let $f(X) = X^T A X$. Then f(X) is convex in \mathbb{R}^n if $X^T A X$ is :
 - (A) Convex.

- (B) Concave.
- (C) Positive semi definite.
- (D) Negative sem definite.
- 14. A feasible solution of convex non-linear programming problem is a
 - (A) Open set.

(B) Convex set.

(C) Closed set.

- (D) Empty set.
- 15. Let f(X) and G(X) be convex differentiable functions, and let X* be an optimal solution of primal, then (X^*,λ^*) is:
 - (A) An optimal solution of a dual. (B) An optimal solution of a primal.
- - (C) Solution of both dual and primal. (D) None of these.

Turn over

- 16. In this method two experiments are placed as close as possible to the centre of the interval of uncertainty:
 - (A) Newton-Raphson method.
- (B) Steepest decent method.
- (C) Fibonacci search method.
- (D) Dichotomous search method.
- 17. Two vectors s_1 and s_2 in $\mathbb{R}n$ are said to be conjugate vectors with respect to \mathbb{H} if :
 - (A) $s_1^T H s_2 > 0$.

(B) $s_1^T H s_2 = 0$.

(C) $s_1^T H s_2 < 0$.

- (D) $s_1^T H s_2 \neq 0$.
- 18. The technique used for solving problems involving posynomials is called:
 - (A) Dynamic programming.
- (B) Goal programming.
- (C) Geometric programming.
- (D) Linear programming.
- 19. The geometric programming is cannot be applied in:
 - (A) Posynomal optimization.
- (B) Linear optimization.
- (C) Oil tank design problem.
- (D) Gravel box design problem.
- 20. The direct cost of project increases and indirect cost decreases if the duration of the project is:
 - (A) No change.

(B) Increased.

(C) Medium change.

(D) Reduced.