D 131314	(Pages : 3)	Name
		Dom No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2025

(CBCSS)

Mathematics

MTH 1C 02—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries a weightage 1.

- 1. Is W = $\{(a_1,...,a_n)/a_2 = a_1^2\}$ a subspace of \mathbb{R}^n ? Justify your answer.
- 2. Let F be a field and let T be the operator on F^2 defined by T(x, y) = (x, 0). Find $[T]_B$, where B be the standard ordered basis for F^2 .
- 3. Let V be a vector space and let V^* be the collection of all linear functionals on V. Show that $\dim V^* = \dim V$.
- 4. Find the null space, nullity, range space and rank for the zero transformation and the identity transformation on a finite-dimensional space V.
- 5. What is meant by minimal polynomial for a linear operator T on a finite dimensional space V over the field F.
- 6. Let V be a vector space and E be a projection of V. Prove that a vector β is in range of E if and only if $E\beta = \beta$.
- 7. Let W be a subspace of an inner product space V and let β be a vector in V. If a best approximation to vectors in W exists, then show that it is unique.
- 8. Show that the vector (x, y) in \mathbb{R}^2 is orthogonal to (-y, x) with respect to standard inner product.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 **D** 131314

Part B (Paragraph Type Questions)

Answer any **two** questions, choosing **two** questions from each module.

Each question carries a weightage 2.

MODULE I

- 9. Let W_1 and W_2 be subspaces of a vector space V such that the set -theoretic union of W_1 and W_2 is also a subspace. Prove that one of the subspaces W_1 or W_2 is contained in the other.
- If W is a proper subspace of a finite dimensional vector space V, then show that W is finite dimensional and dim W < dim V.
- 11. Show that every n -dimensional vector space over the field F is isomorphic to the space F^n .

Module II

- 12. If W_1 and W_2 are subspaces of a finite dimensional vector space, then show that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.
- 13. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by T(x, y) = (3x + 4y, 2x 5y).

Find
$$[T]_S$$
 when (i) $S = \{(1,0), (0,1)\}$; and (ii) $S = \{(1,2), (2,3)\}$.

14. If W is an invariant subspace for T, then show that W is invariant under every polynomial in T. Thus show that the conductor $S(\alpha; W)$ is an ideal in the polynomial algebra F[x], for each α in V.

Module III

- 15. Let T be a linear operator on a finite-dimensional space V. If T is diagonalizable and if $c_1,....,c_k$ are the distinct characteristic values of T, then show that there exist linear operators $E_1,....,E_k$ on V such that
 - (i) $T = c_1 E_1 + ... + c_k E_k$;
 - (ii) $I = E_1 + ... + E_k$;
 - (iii) $E_i E_j = 0, i \neq j$;

3 D 131314

- (iv) $\mathbf{E}_{i}^{2} = \mathbf{E}_{i} (\mathbf{E}_{i} \text{ is a projection});$
- (v) the range of E_i is the characteristic space for T associated with c_i .
- 16. Prove that an orthogonal set of non-zero vectors is linearly independent.
- 17. Let V be an inner product space, W a finite-dimensional subspace, and E the orthogonal projection of V on W. Then show that the mapping $\beta \to \beta E\beta$ is the orthogonal projection of V on W^{\perp}.

 $(6 \times 2 = 12 \text{ weightage})$

Part C(Essay Type Questions)

Answer any **two** questions.

Each question carries a weightage 5.

- 18. If W_1 and W_1 are finite dimensional subspace of a vector space V, then prove that $W_1 + W_2$ is finite dimensional and dim W_1 + dim W_2 = dim $(W_1 \cap W_2)$ + dim $(W_1 + W_2)$.
- 19. Let V and W be finite-dimensional vector spaces over the field F. Let B be an ordered basis for V with dual basis B^* , and let B' be an ordered basis for W with dual basis B'^* . Let T be a linear transformation from V into W; let A be the matrix of T relative to B, B' and let C be the matrix of T^1 relative to T^1 . Then show that T^1 relative to T^1 relative to T^1 relative to T^2 .
- 20. Let $g, f_1, ..., f_r$ be linear functionals on a vector space V with respective null spaces N, N₁,..., N_r. Then show that g is a linear combination of $f_1, ..., f_r$ if and only if N contains the intersection N₁ $\cap ... \cap N_r$.
- 21. Let W be a subspace of an inner product space V and let $\beta \in V$. Then prove that,
 - (i) The vector $\alpha \in W$ is a best approximation to $\beta \in V$ by vectors in W if and only if $\beta \alpha$ is orthogonal to every vector in W.
 - (ii) If a best approximation to $\beta \in V$ by vectors in W exists, it is unique.
 - (ii) If W is finite-dimensional and $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is any orthonormal basis for W, then the $\operatorname{vector} \alpha = \sum_{k=1}^n \frac{\left(\beta/\alpha_k\right)}{\|\alpha_k\|^2} \alpha_k$ is the (unique) best approximation to $\boldsymbol{\beta}$ by vectors in W.

 $(2 \times 5 = 10 \text{ weightage})$