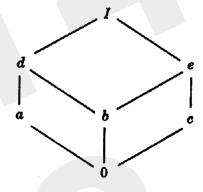
Q.P Code D134143	Total Pages	3		Name	672270
				Register No.	
THIRD SEMI	ESTER UG D	EGREE EX	AMINAT	ION, NOVEM	BER 2025

${\bf MAT3MN204}$ Boolean Algebra and System of Equations 2024 Admission Onwards

Maximum Time :2 Hours Maximum Marks:70

	Section A				
All Question can be answered. Each Question carries 3 marks (Ceiling: 24 Marks)					
1	Give an example of a partial ordering that has				
	1. a minimal element but no maximal element.				
	2. a maximal element but no minimal element.				
	3. neither a maximal nor a minimal element.				
2	In Lattice define				
	(a)Complements (b) Complemented Lattices				
3	Give an example of an infinite lattice L with finite length.				
4	Explain Boolean Algebra with an example				
5	Reduce the following Boolean products to either 0 or a fundamental product:				
	(a) $xyz'yx$ (b) $xyz'yx'z'$				
6	(a) $xyz'yx$ (b) $xyz'yx'z'$ If $A = \begin{bmatrix} 2 & 1 & -1 \\ 7 & 0 & 1 \\ -1 & 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 & 4 \\ 1 & 2 & 1 \\ -2 & -4 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 2 & -1 \\ 8 & 0 & 2 \\ -2 & 3 & 3 \end{bmatrix}$ then show that $C(A + B)^T = CA^T + CB^T$				
7	Find the rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$				


672270

8	Using Cramer's rule solve: $x + y + z = 3$, $x + 2y + 3z = 4$, $x + 4y + 9z = 6$		
9	Find characteristic values of the matrix $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$		
10	Evaluate the Determinant of $\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix}$ by Reduction to Triangular Form		
Section B			

section b

All Question can be answered. Each Question carries 6 marks (Ceiling: 36 Marks)

- Let the set $\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}\$, be ordered by the 11 relation " $A \subseteq B$." Draw its Hasse diagram and
 - 1. Find the maximal elements and the minimal elements.
 - 2. Find the greatest element and least element, if any.
 - 3. Find the greatest lower bound of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$ and least upper bound of $\{\{2\}, \{2, 3, 4\}\}$ $\{4\}$, if they exist
- 12 Consider the following Lattice L

- 1. Find all sublattices with five elements.
- 2. Find complements of a and b, if they exist.
- 3. Find all join-irreducible elements and atoms.
- 4. Is L distributive? Complemented?

13	Show that the following are equivalent in a Boolean algebra: 672270				
	1. $a * b' = 0$				
	2. $a' + b = 1$				
14	Express $E(x, y, z) = (x' + y)' + x'y$ in its complete sum-of-products form.				
15	Determine whether the set $\{\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}\}$ is linearly independent.				
	Give reasons.				
16	Solve the following system of equations with Gauss Elimination Method				
	x + 2y + z = 9				
	2x - y + 3z = 1				
	3x + y + 2z = 4				
17	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ by Gauss–Jordan Elimination				
18	Find the eigen values and the corresponding eigen vectors of the matrix $\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$				
Section C					
	Answer any ONE. Each Question carries 10 marks (1x10=10 Marks)				
19	Find the number of subalgebras of \mathbf{D}_{210} .				
20	Is the given set of vectors in \mathbb{R}^3 with with $3v_1 - 2v_2 + v_3 = 0$ and $4v_1 + 5v_2 = 0$ a vector				
	space? Give reasons. If your answer is yes, determine the dimension and find a basis.				