Q.P Code D134500	Total Pages 3	Name	672369	
		Register No.		
THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025				
(CUFYUGP)				
MAT3MN205 Optimization Techniques				
2024 Admission Onwards				
Maximum Time :2	Hours	Maximum Ma	rks :70	

Section A					
All Question can be answered. Each Question carries 3 marks (Ceiling: 24 Marks)					
1	Write the steps for formulating a linear programming problem				
2	Write different methods for the solution of a linear programming problem				
3	Draw the feasible area of the following constraints.				
	$x - 2y \le 4$, $2x - 3y \le 6$, $y \le 4$ $x, y \ge 0$				
4	Define Slack variable in Linear Programming. Give an Example				
5	Write the following linear programming problem in Simplex format				
	Maximize Z=a-2b+5c Subject to $a + 7b + 2c \le 3$, $a + 2b - 5c \ge 1$, $a - b + 3c \ge 4$, $a, b, c \ge 0$				
6	Explain Tie and Degeneracy in Linear Programming Problems.				
7	Write the difference between Transportation Model and General Linear Programming Model.				
8	Formulate the Phase-I simplex version of the Two-Phase Simplex Method for the following				
	linear programming problem.				
	Maximize $Z=2a-2b-4c$ subject to $2a+3b+5c\geq 2, 3a+b+7c\leq 3, a+4b+6c\leq 5, a,b\geq 0$				
7236	*Q				

9	Define Opportunity cost in Vogel's Approximation Method. How can it be calculated.				
Write the difference in allocation between least cost cell method and Vogel's Appro					
	Method				
	Section B				
Al	Question can be answered. Each Question carries 6 marks (Ceiling: 36 Marks)				
11	Solve graphically Maximize $\mathbf{Z} = 8000\mathbf{a} + 7000\mathbf{b}$ Subject to				
	$3a + b \le 66$, $a + b \le 45$, $a \le 20$, $b \le 40$, $a, b \ge 0$				
10	M: : : 7 15 105 1: 11				
12	Minimise $Z = 1.5x + 2.5y$ subject to				
	$x + 3y \ge 3$, $x + 6y \ge 2$, and both x and $y \ge 0$				
13	Write the Differences between maximisation case and minimisation case in linear progra				
	ming problem.				
14	Solve by Simplex Method				
	Maximize Z=a-2b Subject to				
	$a + 3b \le 3, 2a + 8b \le 8, a, b \ge 0$				
15	Using Two Phase Simplex Method Solve				
10	Maximize $Z = 5x_1 + 4x_2$ subject to				
	$x_1 + 2x_2 \ge 8$, $3x_1 + 2x_2 = 12$, $x_1, x_2 \ge 0$.				
16	Solve the following Transportation Problem				
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
	$egin{array}{c c c c c c c c c c c c c c c c c c c $				
	Demand 10 20 30 15 75				
<u>723</u>	69				

17	Four factories F_1, F_2, F_3, F_4 supply four warehouses W_1, \ldots, W_4 .	Supply, demand and unit
	transportation costs (in Rs.) are:	672369
	transportation costs (in Rs.) are:	

Factory	W_1	W_2	W_3	W_4	Supply
F_1	3	1	7	4	7
F_2	2	6	5	9	9
F_3	8	3	4	2	5
F_4	5	7	6	3	8
Demand	6	8	7	8	

Find the Optimal Solution for least cost transportation cost.

18 Solve the following by Vogel's Approximation Method

	W_1	W_2	W_3	Supply
F_1	2	3	1	7
F_2	5	4	8	9
Demand	5	6	5	

Section C

Answer any ONE. Each Question carries 10 marks (1x10=10 Marks)

19 Solve the LPP by Big-M Method

Maximize 4x + 3y subject to.

$$x + y \le 50$$
, $x + 2y \ge 80$, $3x + 2y \ge 140$, $x, y \ge 0$

There are 4 machines M_1, \ldots, M_4 and 4 jobs J_1, \ldots, J_4 . The returns (benefit) matrix B (rows = machines, columns = jobs) is:

Assign the jobs to machines so as to **maximize** the total return.

672369