QP Code: D133941		Total Pages:02	Name:	
			Register No.	
THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025				
(CUFYUGP)				
PHY3MN201: Mathematical Methods for Physics				
2024 Admission onwards				
Maximum Time :2 Hours Section A Maximum Marks :70				
	All Questions can be answere		s 2 marks (Coiling : 24 Marks)	
	All Questions can be answered. Each Question carries 3 marks (Ceiling : 24 Marks) If $\phi = 3x^2y - y^3z^2$, find $grad \phi$ at the point $(1, -2, -1)$.			
1	Determine the constants a and b such that the curl of the vector			
2	Determine the constants u and b such that the curr of the vector $\vec{A} = (2xy - 3yz)\hat{i} + (x^2 + axz - 4z^2)\hat{j} - (3xy + byz)\hat{k} \text{ is zero.}$			
2	If $z = 1 + i$, find z^2 and $\frac{1}{z}$. Plot them on the Argand diagram.			
3	If $u + iv = (x + iy)^3$, Show that $\frac{u}{x} + \frac{v}{v} = 4(x^2 - y^2)$			
4				
5	Find the modulus and principal argument of the complex number $\sqrt{\frac{1+i}{1-i}}$			
6	Solve the differential equation, $sec^2x.tan y dx + sec^2y.tan x dy = 0$			
7	Solve the differential equation, $\sec x \frac{dy}{dx} = y + \sin x$			
8	Using Gauss's law, find the electric field inside and outside a spherical shell of radius R, which carries a uniform surface charge density σ .			
9	Convert the Cartesian coordinates of a point $P(0, 2, 2)$ into cylindrical coordinates.			
10	Convert the spherical polar coordinates $(r, \theta, \phi) = \left(2, \frac{\pi}{2}, \frac{\pi}{3}\right)$ of a point P to Cartesian coordinates (x, y, z)			
		Section B		
All Questions can be answered. Each Question carries 6 marks (Ceiling: 36 Marks)				
11	(i). What is meant by directional derivative?			
	(ii). Find the directional derivative of $\frac{1}{r}$ in the direction of \vec{r} where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$			
12	(i). State and explain Ampere's law. (ii). Two long coaxial solenoids each carry current I , but in opposite directions. The inner solenoid (radius a) has n_1 turns per unit length, and the outer one (radius b) has n_2 . Find B in each of the three regions: (a) inside the inner solenoid, (b) between them, and (c) outside both.			
13	Find the complex number z if $arg.(z+1) = \frac{\pi}{6}$ and $arg.(z-1) = \frac{2\pi}{3}$			
14	In the series LCR circuit, $R = 300\Omega$, $L = 60$ mH, $C = 0.50$ μ F, $V = 50$ Volt, $\omega = 10,000$ rad/s. Find the reactances X_L and X_C , the impedance Z , the current amplitude I , the phase angle φ and the voltage amplitude across each circuit element.			
15	Solve the differential equation $(x^3 + y^3) dy = x^2 y dx$			
16	Solve $x\left(\frac{dy}{dx} + y\right) = 1 - y$			
17	Express $z\hat{\imath} + x\hat{\jmath} + 2y\hat{k}$ in cylindri	Express $z\hat{\imath} + x\hat{\jmath} + 2y\hat{k}$ in cylindrical co-ordinates.		

6-751			
A long coaxial cable carries a uniform volume charge density ρ on the inner cylinder (radius a),			
and a uniform surface charge density on the outer cylindrical shell (radius b). This surface			
charge is negative and of just the right magnitude so that the cable as a whole is electrically			
neutral. Find the electric field in each of the three regions: (i) inside the inner cylinder ($s < a$),			
(ii) between the cylinders (a $<$ s $<$ b), (iii) outside the cable (s $>$ b)			
Section C			
Answer any ONE .Each Question carries 10 marks (1x10=10 Marks)			
(i). If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, show that:			
(a). $grad r = \frac{\vec{r}}{r}$			
(b). $grad \left(\frac{1}{r}\right)^{r} = \frac{\vec{r}}{r^{3}}$			
(ii). If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and $u = x^2 + y^2 + z^2$, Find $div.(u\vec{r})$ in terms of u .			
(i). A spring is mounted horizontally, with its left end fixed. A spring balance attached to the free			
end and pulled toward the right. A force of 6.0 N causes a displacement of 0.030 m. Find the			
force constant k of the spring.			
(ii). The spring balance is replaced with a 0.50-kg glider, pulled it 0.020 m to the right along a			
frictionless air track, and released it from rest. Find the angular frequency , frequency and			
period of the resulting oscillation.			
(iii). The glider is given an initial displacement $x_0 = +0.015 m$ and an initial velocity			
$v_{0x} = +0.40m/s$ (a) Find the period, amplitude, and phase angle of the resulting motion.			
(b) Write equations for the displacement, velocity, and acceleration as functions of time.			