QP Code	: D134297	Total Pages:2	Name:
			Register No.
THIRD SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025			
(CUFYUGP)			
PHY3MN202-SOLID STATE PHYSICS AND SPECTROSCOPY			
2024 Admission onwards Maximum Time :2 Hours Maximum Marks :70			
Section A			
All Questions can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)			
1 W	•	Schrödinger equation.	Explain the physical significance of
2 Br	Briefly explain the mechanism of collision broadening of spectral lines.		
3 W	What is the physical significance of the expectation value of an operator?		
	Explain the nature of Van der Waals bonding. Why is it weaker compared to ionic and covalent bonds?		
	What are the different types of energies possessed by a molecule? Why is the translational energy of a molecule not quantised?		
6 Di	stinguish between spontaneou	s and stimulated emissi	on.
7 St	ate the normalization condition	for a wavefunction.	
8 W	hat is Raman scattering. Why	are Stokes lines more in	itense than anti Stokes lines?
	efine the zero-point energy of ansitions in infrared spectrosco	_	nat is the selection rule for vibrational
10 Br	iefly explain the main compone		
Section B			
All Questions can be answered. Each Question carries 6 marks (Ceiling : 36 Marks)			
vik		e spacing between its v	$70 Nm^{-1}$. Calculate the frequency of ribrational energy levels in eV. Given
	particle confined to the x axis h		
12			
72640	$\psi(x) = B(1-x)$	$), -1 \le x \le +1$	

$\psi(x)=0$, elsewhere a)Find the normalization constant B b)Calculate the expectation value < x >			
Consider a gas of atoms at T=300K. The mass of each atom is $4.2 \times 10^{-27} kg$. Some of the atoms in the excited state emit radiation of frequency ν . Estimate the amount of Doppler broadening.			
Show that $\psi(x)=\cos(4x)$ is an eigenfunction of the operator $\frac{d^2}{dx^2}$. Find the corresponding eigenvalue. Also verify whether $\psi(x)=x^2$ is an eigenfunction of the same operator.			
The CO molecule has a bond length of 0.113 nm and the masses of \mathcal{C}^{12} and \mathcal{O}^{16} atoms are respectively $1.99\times 10^{-26}kg$ and $2.66\times 10^{-26}kg$. Find the energy and the angular velocity of the CO molecule when it is in its lowest rotational state.			
Light from a 2.5 mW laser source of aperture diameter 1.8 cm and $\lambda = 5000 A^{\circ}$ is focused by a lens of focal length 20 cm. Calculate the area and intensity of the image.			
Define Einstein's coefficients and establish the relations between them.			
If the bond length of H_2 is 0.07417 nm, what would be the positions of the first three Raman lines in the spectrum? $H^1 = 1.673 \times 10^{-27} kg$.			
Section C Answer any ONE .Each Question carries 10 marks (1x10=10 Marks)			
Explain the quantum theory of Raman scattering. Discuss the rotational Raman spectra of linear molecules and the selection rules for rotational Raman transitions.			
Explain the concept of operators in quantum mechanics. Illustrate with examples of momentum and Hamiltonian operators, and explain how expectation values are calculated.			