

QP Code: D132970	Total Pages: 1	Name:
Register No.		

FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2025

(CUFYUGP)

CHE1MN 102- BASIC INORGANIC AND BIO-INORGANIC CHEMISTRY

2024 Admission onwards

Maximum Time : 2 Hours	Maximum Marks : 70
------------------------	--------------------

Section A

All Questions can be answered. Each Question carries 3 marks (Ceiling : 24 Marks)

1	What is Moseley's contribution to the periodic table?
2	Define ionization enthalpy and explain its variation across a period.
3	Explain the concept of oxidation number with examples.
4	What is the role of metal ions in enzyme activity?
5	Write a short note on the transport of CO ₂ in blood.
6	Describe the structure of chlorophyll and its metal center.
7	Explain the biological importance of zinc.
8	Draw the structure of cis platin and oxaliplatin.
9	What are the effects of mercury toxicity in humans?
10	Mention two biological functions of cobalt.

Section B

All Questions can be answered. Each Question carries 6 marks (Ceiling : 36 Marks)

11	Describe the Bohr model of the atom and its limitations.
12	Explain the concept of quantum number.
13	Discuss the electronic configuration of transition elements (atomic number 21-30) .
14	Predict the shapes of XeF ₄ , SF ₆ , and IF ₇ using VSEPR theory.
15	Define molarity and normality. Calculate the normality of a solution containing 5.3 g of Na ₂ CO ₃ in 250 mL solution.
16	Explain the principle and procedure of complexometric titration using EDTA.
17	Derive the relation between solubility and solubility product of AgCl and BaCl ₂
18	A solution contains 0.2 M NaOH. Explain the concept of molarity and calculate the mass of NaOH present in 2litres of this solution.

Section C

Answer any ONE .Each Question carries 10 marks (1x10=10 Marks)

19	Explain hybridization in PCl ₅ and SF ₆ . Include orbital diagrams and geometry.
20	Explain the redox titration and indicator used. A 20mL sample of FeSO ₄ requires 20 mL of 0.1 N MnO ₄ for oxidation. Calculate the amount of FeSO ₄ present. (atomic mass of Fe=56, S=32, O=16).