

D 132043

(Pages : 3)

Name.....

Reg. No.....

**THIRD SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY]
EXAMINATION, NOVEMBER 2025**

(CBCSS)

Mathematics

MTH3E02—CRYPTOGRAPHY

(2019 Admission onwards)

Time : Three Hours

Maximum : 30 Weightage

Section A

*Answer all questions.**Each question carries 1 weightage.*

1. Define Shift Cipher.
2. Find the number of keys in the Affine Cipher over \mathbb{Z}_{60} .
3. Evaluate $-7503 \bmod 81$.
4. Define perfect secrecy of a cryptosystem ?
5. Define the entropy and the redundancy of a natural language.
6. What is ECB (Electronic Codebook) mode for DES ?
7. Write the binary equivalent of hexadecimal 153.
8. What is a collision resistant hash function ?

(8 \times 1 = 8 weightage)

Section B

*Answer any two questions from each of the following three units.**Each question carries 2 weightage.*

UNIT I

9. Suppose the key for a Shift Cipher is $K = 13$ and the planetext is MATHEMATICS. What is the cypher text ?

Turn over

10. Define a synchronous stream cipher.

11. Find the inverse of $A = \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix} \in M_2(\mathbb{Z}/26\mathbb{Z})$.

Unit II

12. Suppose that in the Shift Cipher, 26 keys are used with equal probability $\frac{1}{26}$. Show that the Shift Cipher has perfect secrecy for any plaintext probability distribution.
13. Show that $H(X, Y) \leq H(X) + H(Y)$, and equality holds if and only if X and Y are independent random variables.
14. Suppose X is a random variable having a probability distribution that takes on the values p_1, p_2, \dots, p_n , where $p_i > 0$. Show that $H(X) \leq \log_2 n$, and equality holds if and only if $p_i = \frac{1}{n}$.

Unit III

15. Explain Differential Cryptanalysis.
16. Let p be prime. For $a, b \in \mathbb{Z}_p$ define $f_{(a, b)} : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$ by the rule $f_{(a, b)} = ax + b \pmod{p}$. Show that $(\mathbb{Z}_p, \mathbb{Z}_p, \mathbb{Z}_p \times \mathbb{Z}_p, \{f_{(a, b)} : a, b \in \mathbb{Z}_p\})$ is a strongly universal (p, p) -hash family.
17. Explain the secure Hash Algorithm.

($6 \times 2 = 12$ weightage)

Section C

Answer any two questions.

Each question carries 5 weightage.

18. Encrypt the plaintext “BEAUTIFUL” using Hill cipher encryption with the key

$$\begin{bmatrix} 11 & 8 & 2 \\ 3 & 7 & 1 \\ 3 & 2 & 7 \end{bmatrix}.$$

713404

D 132043

3

19. Explain Huffman Encodings.
20. State and prove piling-up lemma.
21. Discuss Substitution-Permutation Network (SPN).

($2 \times 5 = 10$ weightage)

713404