C 42743	(Pages : 3)	Name	
		Reg. No	

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Chemistry

CHE2C05—GROUP THEORY AND CHEMICAL BONDING

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Find Schoenflies symbol of point group for:
 - (a) CH₂Cl₂.

- (b) Allene.
- 2. Generate matrices (3×3) for $(a) C_4$; $(b) S_4$.
- 3. Distinguish between degenerate and nondegenerate representations.
- 4. State rules for assigning Mulliken's symbols for irreducible representations.
- 5. You are given $\int_{-a}^{+a} x^3 dx$. Predict whether it is a vanishing integral or not. Justify.
- 6. Write projection operator for A_1 symmetry $\left(\widehat{P} A_{_1} \right)$ for $C_2 v$ molecule.
- 7. Arrange O_2 , O_2^+ and O_2^- in the increasing order of stability. Justify your answer.
- 8. Write spectroscopic term symbol for (a) O_2 ; (b) C_2 .
- 9. The energy of $\pi(\rho_1)$ molecular orbitals of benzene are $\alpha + 2\beta$, $\alpha + \beta$, $\alpha + \beta$, $\alpha \beta$, and $\alpha 2\beta$. Find the delocalization energy.
- 10. State and explain Born-Oppenheimer approximation.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 C 42743

Section B

Answer any **six** questions. Each question carries a weightage of 2.

- 11. Show that the four symmetry operations $E, C_2 z, \sigma_h xy$ and i form a Mathematical group under multiplication.
- 12. Generate group multiplication table for C_3v .
- 13. Taking the positional coordinates of all atoms of cis butadiens (C_2v) generate a reducible representation. (characters only).
- 14. State great orthogonality theorem. Use the theorem to derive C_3 character table.
- 15. Find IR and Raman active vibrations of NH_3 . Use $\mathrm{C}_3 v$ character table.

C_3v	E	$2\mathrm{C}_3$	$3\sigma_v$		
A_1	1	1	1	z	$x^2 + y^2, z^2$
\mathbf{A}_2	1	1	-1	Rz	
E	2	-1	0	(x,y) (Rx, Ry)	$(x^2 - y^2, xy) (xz, yz)$

16. Find molecular orbitals of $\mathrm{H_2O}.$ Use $\mathrm{C_2}v$ character table.

$\mathbf{C}_2 v$	E	\mathbf{C}_{2z}	σ_{vxz}	σ^1_{vyz}		
\mathbf{A}_1	1	1	1		Z	x^2, y^2, z^2
${\rm A}_2$	1	1	-1	-1	R_z	xy
${\rm B}_{1}$	1	-1	1	-1	x , R_y	xz
${\color{red}B_2}$	1	-1	-1	1	y, R_x	yz

3 C 42743

- $17. \ \ Briefly\ discuss\ Sp^2\ hybridization.$
- 18. Find $\pi(\rho_i)$ molecular orbitals and the corresponding energies of allyl cation using HMO method.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries a weightage of 5.

19. Find hybridized orbitals of CH4. Use Td character table:

Td	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
\mathbf{A}_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_1	3	0	-1	1	-1	(Rx, Ry, Rz)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)

- 20. Briefly discuss MO theory of bonding as applied to $\,H_2^+$.
- 21. Find allowed electronic transitions in formal dehyde. Use $\mathrm{C}_2 v$ character table.
- 22. (a) Generate gamma cart for H_2O . Reduce it into its IR components. Use C_2v character table.
 - (b) Explain the term 'block diagonalization'. Discuss its impoprtance in group theory.

 $(2 \times 5 = 10 \text{ weightage})$