D 52824	(Pages : 3)	Name
		Reg. No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2023

(CBCSS)

Mathematics

MTH 1C 02—LINEAR ALGEBRA

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries a weightage 1.

- 1. Is the vector (3,-1,0,-1) in the subspace of \mathbb{R}^4 spanned by the vectors (2,-1,3,2),(-1,1,1,-3) and (1,1,9,-5).
- 2. Find two linear operators T and U on \mathbb{R}^2 such that TU = 0 but $UT \neq 0$.
- 3. Prove or disprove "Every square matrix has characteristic values in \mathbb{R} ".
- 4. Define linear functional. Give an example.
- 5. Let V be an inner product space and let $x \in V$. Prove that if $(x / y) = 0 \forall y \in V \Rightarrow x = 0$.
- 6. Prove that the map $f: \mathbb{R}^2 \to \mathbb{R}^3$ defined by f(x, y) = (x + 1, 2y, x + y) is not linear.
- 7. Define inner product on a vector space V.
- 8. Let T be a linear operator on V and let U be any linear operator on V which commutes with T, i.e., TU = UT. Let W be the range of U and let N be the null space of U. Show that both W and N are invariant under T.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 D 52824

Part B (Paragraph Type Questions)

Answer any **six** questions, choosing **two** questions from each module.

Each question carries a weightage 2.

MODULE I

- 9. Show that the subspace spanned by a non-empty subset S of a vector space V is the set of all linear combinations of vectors in S.
- 10. Let $B = \{\alpha_1, \alpha_2, \alpha_3\}$ be the ordered basis for \mathbb{R}^3 consisting of $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1),$ $\alpha_3 = (1, 0, 0)$. What are the co-ordinates of the vector (a, b, c) in the ordered basis B.
- 11. Let T be the operator on \mathbb{C}^2 for which $T\epsilon_1 = (1,0,i)$, $T\epsilon_2 = (0,1,1)$, $T\epsilon_3 = (i,1,0)$. Is T invertible?

MODULE II

- 12. Let W_1 and W_2 be subspaces of a finite dimensional vector space V. Prove that $W_1=W_2$ if and only if $W_1^{\ 0}=W_2^{\ 0}$.
- 13. Let $f_1(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4$; $f_2(x_1, x_2, x_3, x_4) = 2x_2 + x_4$; $f_3(x_1, x_2, x_3, x_4) = -2x_1 4x_3 + 3x_4 \text{ be three linear functionals on } \mathbb{R}^4.$ Find the subspace which these functionals annihilate.
- 14. Let T be the linear operator on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix

$$\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
. Prove that T is diagonalizable by exhibiting a basis for \mathbb{R}^3 , each vector of matrix

which is a characteristic vector of T.

Module III

- 15. Let $\mathbf{E}_1,...,\mathbf{E}_k$ are k linear operators on V which satisfy :
 - (i) each E_i is a projection;
 - (ii) $E_i E_j = 0 \text{ if, } i \neq j;$

3 D 52824

- (iii) $I = E_1 + + E_k$;
- (iv) the range of E_i is W_i

and let \mathbf{W}_i be the range of \mathbf{E}_i , then show that $\mathbf{V} = \mathbf{W}_1 \oplus \oplus \mathbf{W}_k$.

16. Let V be a real or complex vector space with an inner product. Prove that

$$\parallel \alpha + \beta \parallel^2 + \parallel \alpha - \beta \parallel^2 = 2 \parallel \alpha \parallel^2 + 2 \parallel \beta \parallel^2$$
 for every $\alpha, \beta \in V$.

17. State and prove Bessel's Inequality.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any **two** questions. Each question carries a weightage 5.

- 18. State and prove Cayley- Hamilton Theorem.
- 19. a) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x c_1) \dots (x c_k) \text{ where } c_1, \dots, c_k \text{ are distinct elements of F}.$
 - b) Define T-conductor of α into W.
- 20. Let $g, f_1, ..., f_r$ be linear functionals on a vector space V with respective null spaces $N, N_1, ..., N_r$. Then show that g is a linear combination of $f_1, ..., f_r$ if and only if N contains the intersection $N_1 \cap ... \cap N_r$.
- 21. State and prove Gram-Schmidt Orthogonalization process. Consider the vectors $\beta_1 = (3,0,4), \beta_2 = (-1,0,7), \beta_3 = (2,9,11) \text{ in } \mathbb{R}^3 \text{ with standard inner product. Apply Gram-Schmidt}$ Orthogonalization process to β_1,β_2,β_3 , and obtain an orthonormal basis for \mathbb{R}^3 .

 $(2 \times 5 = 10 \text{ weightage})$