FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2023

(CBCSS)

Mathematics

MTH 1C 03—REAL ANALYSIS—I

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Type Questions)

Answer all questions.

Each question carries a weightage 1.

- 1. Prove that a finite point set has no limit points.
- 2. If X is a metric space and $E \subset X$, then prove that $E = \overline{E}$ if and only if E is closed.
- 3. Discuss the continuity/discontinuity behaviour of the function f defined by

$$f(x) = \begin{cases} 1 & (x \text{ rational}) \\ 0 & (x \text{ irrational}) \end{cases}$$

- 4. Suppose f and g are defined on [a,b] and are differentiable at a point $x \in [a,b]$. Then prove that f+g is differentiable at x.
- 5. If f is a real continuous function on [a, b] which is differentiable in (a, b), then prove that there is a point $x \in (a, b)$ at which

$$f(b)-f(a)=(b-a)f'(x).$$

6. Define upper Riemann integral of a function.

Turn over

2 **D 52825**

7. For m = 1, 2, 3, ..., n = 1, 2, 3,, let

$$S_{m,n} = \frac{m}{m+n}.$$

Then find $\lim_{n\to\infty}\lim_{m\to\infty}\mathbf{S}_{m,n}$ and $\lim_{m\to\infty}\lim_{n\to\infty}\mathbf{S}_{m,n}$.

8. Describe the test for uniform convergence of sequence of functions, due to Weierstrass.

 $(8 \times 1 = 8 \text{ weightage})$

Part B (Paragraph Type Questions)

Answer any **two** questions from each module. Each question carries a weightage 2.

MODULE I

- 9. If E is an infinite subset of a compact set K, then prove that E has a limit point in K.
- 10. Prove that subset E of the real line \mathbb{R}^1 is connected if it has the following property:

If
$$x \in E$$
, $y \in E$, and $x < z < y$, then $z \in E$.

11. Prove that a mapping f of a metric space X into a metric space Y is continuous on X implies $f^{-1}(V)$ is open in X for every open set V in Y.

MODULE II

- 12. Suppose f and g defined on [a,b] and are differentiable at a point $x \in [a,b]$. Then prove that $\frac{f}{g}$ is differentiable at x.
- 13. Suppose f is differentiable in (a, b). If $f'(x) \ge 0$ for all $x \in (a, b)$, then prove that f is monotonically increasing.
- 14. If $f_1(x) \le f_2(x)$ on [a, b], then prove that

$$\int_{a}^{b} f_1 d\alpha \leq \int_{a}^{b} f_2 d\alpha.$$

3 **D 52825**

Module III

15. If γ' is continuous on [a, b], then prove that γ is rectifiable, and

$$\Lambda\left(\gamma\right) = \int_{a}^{b} \left| \gamma'\left(t\right) \right| dt.$$

- 16. Suppose $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then prove that f is continuous on E.
- 17. Prove that the sequence of functions $\{f_n\}$, defined on E, converges uniformly on E implies for every $\varepsilon > 0$ there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies

$$|f_n(x)-f_m(x)| \leq \varepsilon.$$

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any **two** questions.

Each question carries a weightage 5.

- 18. Let A be a the set of all sequences whose elements are the digits 0 and 1. Then prove that the set A is uncountable.
- 19. Suppose f and g are real and differentiable in (a,b), and $g'(x) \neq 0$ for all $x \in (a,b)$, where $-\infty \leq a < b \leq +\infty$. Suppose

$$\frac{f'(x)}{g'(x)} \to A \text{ as } x \to a.$$

If

$$f(x) \rightarrow 0$$
 and $g(x) \rightarrow 0$ as $x \rightarrow a$,

or if

$$g(x) \to +\infty \text{ as } x \to a,$$

Turn over

D 52825

then prove that

$$\frac{f(x)}{g(x)} \to A \text{ as } x \to a.$$

20. Prove that $f \in \Re(\alpha)$ on [a,b] if and only if for every $\varepsilon > 0$ there exists a partition P such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$
.

- 21. Suppose K is compact, and
 - (a) $\{f_n\}$ is a sequence of continuous functions on K,
 - (b) $\{f_n\}$ converges pointwise to a continuous function f on K,
 - (c) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, n = 1, 2, 3,...

Then prove that $f_n \to f$ uniformly on K.

 $(2 \times 5 = 10 \text{ weightage})$