FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2023

(CBCSS)

Mathematics

MTH 1C 05—NUMBER THEORY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Type Questions)

Answer all questions.

Each question carries a weightage 1.

- 1. Prove that the power function $N_{\alpha}(n) = n^{\alpha}$, where α is a fixed real or complex number is completely multiplicative.
- 2. State Generalized inversion formula.
- 3. Prove that $\sum_{n>x} \frac{1}{n^s} = O\left(x^{1-s}\right) \text{ if } s > 1.$
- 4. For $x \ge 2$, show that $\pi(x) = \frac{\vartheta(x)}{\log x} + \int_{2}^{x} \frac{\vartheta(t)}{t \log^{2} t} dt$.
- 5. Describe briefly about RSA cryptosystems.
- 6. Define Legendre's symbol and evaluate the Legendre's symbol (-1|p).
- 7. State Reciprocity law for Jacobi symbol.
- 8. Determine whether 888 is a quadratic residue or nonresidue of the prime 1999.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 **D 52827**

Part B (Paragraph Type Questions)

Answer any **two** questions from each module. Each question carries a weightage 2.

MODULE I

- 9. For $n \ge 1$ show that $\varphi(n) = n \prod_{p|n} \left(1 \frac{1}{p}\right)$.
- 10. Let f be a completely multiplicatively function. Prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n) f(n)$, $\forall n \ge 1$.
- 11. For $x \ge 1$, show that $\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s})$, if s > 0, $s \ne 1$.

Module II

- 12. For all $x \ge 1$, show that $\sum_{p \le x} \frac{\log p}{p} = \log x + O(1)$.
- 13. State and prove Abel's identity.
- 14. Let $\{a_n\}$ be a non negative sequence such that $\sum_{n \le x} a(n) \left[\frac{x}{n}\right] = x \log x + O(x)$ for all $x \ge 1$. Prove

that
$$\sum_{n \le x} \frac{a(n)}{n} = \log x + O(1)$$
.

Module III

- 15. Sate and prove Euler's criterion.
- $16. \quad \text{If P is positive odd integer prove that Jacobi symbol } \left(-1\big|P\right) = \left(-1\right)^{\!\left(P-1\right)\!/2} \text{ and } \left(2\big|P\right) = \left(-1\right)^{\!\left(P^2-1\right)\!/8}.$
- 17. How do classical and public cryptosystem differ?

 $(6 \times 2 = 12 \text{ weightage})$

3 D 52827

Part C (Essay Type Questions)

Answer any **two** questions.

Each question carries a weightage 5.

- 18. (a) If g and f * g are multiplicative prove that f is multiplicative.
 - (b) If f is multiplicative prove that $\sum_{d/n} \mu(d) f(d) = \prod_{p/n} (1 f(p))$.
- 19. State and prove Euler's summation formula.
- 20. For every integer $n \ge 1$, prove that the $n^{\rm th}$ prime p_n satisfies the inequalities

$$\frac{1}{6} n \log n < p_n < 12 \left(n \log n + n \log \frac{12}{e} \right).$$

21. State and prove Quadratic Reciprocity law for Legendre's symbol.

 $(2 \times 5 = 10 \text{ weightage})$