C 42788	(Pages : 2)	Name
		Reg. No

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Mathematics

MTH 2C 07—REAL ANALYSIS—II

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Questions)

Answer **all** questions.

Each question carries 1 weightage.

- 1. Prove that Lebesgue outer measure is translation invariant.
- 2. Define cantor set and prove that it has a measure zero.
- 3. State a sufficient condition for a function *f* to be measureable and show that continuous functions on measureable domains are measureable.
- 4. Show that for a sequence of bounded measurable functions, uniform convergence is sufficient for passage of limit under integral sign.
- 5. Let *f* and *g* are integrable functions. State and prove Additivity over domains of integration.
- 6. Define Convergence in measure for a sequence of measurable functions and give the statement of Riesz Theorem.
- 7. Define Convex functions and state Chordal Slope Lemma.
- 8. Prove that every convergent sequence in a normed space is Cauchy.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 C **42788**

Part B

Answer any **six** questions, choosing **two** questions from each unit. Each question carries 2 weightage.

Unit I

- 9. Prove that all countable sets are measureable.
- 10. Prove the existence of non measurable sets.
- 11. State and prove Simple Approximation Theorem.

Unit II

- 12. State and prove countable Additivity of integration for integrable functions.
- 13. State and Prove Lebesgue dominated convergence Theorem.
- 14. State and Prove Vitali convergence Theorem for sequence of functions defined on any set E.

Unit III

- 15. a) Define a cover of a set E in the sense of Vitali
 - b) State Vitali Covering Lemma
 - c) Define Upper and lower derivatives of a real valued function.
 - d) State Lebesgue Theorem on Differentiability.
- 16. State and prove Jordan's Theorem for functions of bounded variation.
- 17. Prove that a convex function on (a, b) is differentiable except at countable number of points and its derivative is an increasing function.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** from the following four questions. Each question carries 5 weightage.

- 18. Define Lebesgue Outer Measure and prove that outer measure of an interval is its length.
- 19. Define measurability of functions and prove that if f and g are measurable function on E and are finite valued on E, then f + g and fg are measurable.
- 20. State and prove Fatou's Lemma and Monotone Convergence Theorem.
- 21. State and prove Holder inequality and Minkowski's Inequality.

 $(2 \times 5 = 10 \text{ weightage})$