C 42791	(Pages : 3)	Name
		Reg. No

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Mathematics

MTH 2C 10—OPERATIONS RESEARCH

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Prove that $f(x) = 2x_1^2 + 2x_2^2 + 4x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$ is a convex function.
- 2. Show that the set S_F of feasible solutions, if not empty, is a closed convex set bounded from below and so has at least one vertex.
- 3. Define the dual of an LP problem. Illustrate with an example.
- 4. Write the important steps to setting up the mathematical model for a linear programming problem.
- 5. State few applications of duality.
- 6. Solve the game whose payoff matrix is $\begin{pmatrix} 15 & 16 \\ 20 & 5 \end{pmatrix}$.
- 7. Find the optimal strategies and the value of the game : $\begin{pmatrix} -5 & 31 & 20 \\ 5 & 54 & 6 \\ -4 & -20 & -5 \end{pmatrix}.$
- 8. State any one disadvantage of Cutting plane method.

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 C 42791

Part B

Answer any **two** questions from each of the following **three** units. Each question carries 2 weightage.

Unit I

- 9. Explain the method of solving a linear programming problem with two variables using graphical method.
- 10. Let f(X) be defined in a convex domain $K \subseteq E_n$ and be differentiable. Derive a necessary and sufficient condition for f(X) to be a convex function.
- 11. Write a sequence of steps that constitutes one iteration leading from one basic feasible solution to another.

UNIT II

- 12. How do we test for optimality while solving a transportation problem.
- 13. Show that the optimum value of f(X) of the primal, if it exists, is equal to the optimum value of $\phi(Y)$ of the dual.
- 14. Characterize any set of linearly dependent column vectors P_{ij} in the matrix \bar{T} .

Unit III

- 15. Show that the problem of solving a rectangular game is equivalent to solving a problem of linear programming.
- 16. Discuss on the introduction of new constraints while determining a new optimal solution from the optimal solution already obtained.
- 17. Explain the maximum flow problem.

 $(6 \times 2 = 12 \text{ weightage})$

3 C 42791

Part C

Answer any **two** questions.

Each question carries 5 weightage.

- 18. If S_F is non-empty, then show that the objective function f(X) has either an unbounded minimum or it is minimum at a vertex of S_F .
- 19. Use dual simplex method to solve the following LP problem:

Minimize
$$f = 3x_1 + 5x_2 + 2x_3$$
 subject to $-x_1 + 2x_2 + 2x_3 \ge 3$; $x_1 + 2x_2 + x_3 \ge 2$; $-2x_1 - x_2 + 2x_3 \ge -4$, $x_1, x_2, x_3 \ge 0$.

20. Find the minimum path from v_0 to v_8 in the graph given below in which the number along a directed arc denotes its length.

21. Explain the Branch and Bound method with an example.

 $(2 \times 5 = 10 \text{ weightage})$