D 51308	(Pages : 3)	Name
		Reg. No

THIRD SEMESTER M.Sc. (CBCSS) [REGULAR/SUPPLEMENTARY] DEGREE EXAMINATION, NOVEMBER 2023

Mathematics

MTH 3C 11—MULTIVARIABLE CALCULUS AND GEOMETRY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each questions carries a weightage of 1.

- 1. State the chain rule for multivariable functions.
- 2. Let D be an open subset of \mathbb{R}^n and $\mathbf{a} \in \mathcal{D}$ and let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$. Define the directional derivative of F at \mathbf{a} in the direction \mathbf{u} .
- 3. Prove that any reparametrization of a regular curve is regular.
- 4. Compute the curvature of the curve $\gamma(t) = \left(\frac{4}{5}\cos t, 1 \sin t, -\frac{3}{5}\cos t\right)$.
- 5. Is the surface $x^2 + y^2 + z^4 = 1$ smooth? Justify your answer.
- 6. Calculate the first fundamental form of the surface $\sigma(u,v) = (\cos hu, \sin hu, v)$. What kind of surface is this?
- 7. Find the equation of the tangent plane of the surface patch $\sigma(r,\theta) = (r \cosh \theta, r \sinh \theta, r^2)$ at the point (1, 0, 1).
- 8. Show that the Weingarten map changes sign when the orientation of the surface changes. $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer **six** questions choosing two from each unit. Each question carries a weightage of 2.

Unit I

9. Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , f is differentiable at $x_0 \in E$, g maps an open set containing f(E) into \mathbb{R}^k and g is differentiable at $f(x_0)$. Prove that $F: E \to \mathbb{R}^k$ defined by F(x) = g(f(x)) is differentiable at x_0 and $F'(x_0) = g'(f(x_0))f'(x_0)$.

2 **D** 51308

- 10. Prove that BA is linear if A and B are linear transformations. Prove also that A⁻¹ is linear and invertible.
- 11. If [A] and [B] are n by n matrices, then show that det([B][A]) = det[B]det[A].

Unit II

- 12. Prove that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
- 13. Let γ be a unit-speed curve in \mathbb{R}^3 with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.
- 14. Show that $\gamma(t) = \left(\cos^2 t \frac{1}{2}, \sin t \cos t, \sin t\right)$ is a parametrization of the curve of intersection of the circular cylinder of radius $\frac{1}{2}$ and axis the z-axis with the sphere of radius 1 and centre $\left(-\frac{1}{2},0,0\right)$.

Unit III

- 15. What is meant by an oriented surface? Show that Möbius band is not orientable.
- 16. Show that the normal curvature of any curve on a sphere of radius r is $\pm \frac{1}{r}$.
- 17. Prove that the area of a surface patch is unchanged by reparametrization.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 18. State and prove the implicit function theorem.
- 19. Prove the following:
 - (a) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||A|| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
 - $\text{(b)}\quad \text{If } \mathbf{A},\,\mathbf{B}\in\mathbf{L}\left(\mathbb{R}^n\,,\mathbb{R}^m\right) \text{ and } c \text{ is a scalar, then } \|\mathbf{A}+\mathbf{B}\|\leq \|\mathbf{A}\|+\|\mathbf{B}\|, \|c\mathbf{A}\|=|c|\|\mathbf{A}\|.$
 - (c) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $||BA|| \le ||B|| ||A||$.

3 **D** 51308

- 20. Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 with nowhere vanishing curvature. Prove that its torsion is given by $\gamma = \frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}$, where the \times indicate the vector product and the dot denotes d/dt.
- 21. Let U and \tilde{U} be open subsets of \mathbb{R}^2 and let $\sigma: U \to \mathbb{R}^3$ be a regular surface patch. Let $\Phi: \tilde{U} \to U$ be a bijective smooth map with smooth inverse map $\Phi^{-1}: U \to \tilde{U}$. Prove that $\tilde{\sigma} = \sigma \circ \Phi: \tilde{U} \to \mathbb{R}^3$ is a regular surface path.

 $(2 \times 5 = 10 \text{ weightage})$