# THIRD SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2023

#### **Mathematics**

# MTH 3C 14—PDE AND INTEGRAL EQUATIONS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

#### Part A

Answer **all** questions.

Each questions carries a weightage of 1.

- 1. Find the general solution to the equation  $-yu_x + xu_y = 0$ .
- 2. Check whether the transversality condition holds for the Cauchy problem:

$$xu_x - yu_y = u + xy$$
,  $u(x, x) = x^2$ ,  $1 \le x \le 2$ .

- 3. Describe Rankine-Hugoniot condition.
- 4. Prove the uniqueness of heat conduction problems with Dirichlet boundary condition.
- 5. Describe Duhamel's principle.
- 6. Show that the solution of the Neumann problem differ by constant in a smooth domain.
- 7. State four properties of Green's function.
- 8. Find the resolvent kernel of the Volterra integral equations with the kernel  $K(x,\xi) = e^{x^2 \xi^2}$ .

 $(8 \times 1 = 8 \text{ weightage})$ 

#### Part B

Answer any **two** questions from each unit. Each question carries a weightage of 2.

## Unit I

- 9. Show the equation  $u_x + 3y^{\frac{2}{3}}u_y = 2$  subject to the initial condition u(x,1) = 1 + x.
- 10. Find the canonical form and general solution of the differential equation:

$$u_{xx} - 2\sin(x)u_{xy} - \cos(2x)u_{yy} - \cos(x)u_y = 0.$$

11. Explain and justify the wellposedness of Cauchy problem for the one-dimensional homogeneous wave equation.

2 **D** 51311

Unit II

12. Solve  $u_t - u_{xx} = 0, 0 < x < \pi, t > 0$ 

$$u(0,t) = u(\pi,t) = 0, t \ge 0$$

$$u(x,0) = f(x) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi. \end{cases}$$

- 13. State and prove the mean value principle.
- 14. Find the harmonic function in the unit square satisfying the Dirichlet conditions  $u(x,0) = 1 + \sin(\pi x), u(x,1) = 2, u(0,y) = u(1,y) = 1 + y.$

Unit III

15. Construct Green's function for the boundary value problem:

$$y'' = 0$$
;  $y(0) = y(l)$ .

16. Find the eigenvalues and eigenfunctions of the homogeneous integral equations:

$$y(x) = \lambda \int_{0}^{1} \left(2x\xi - 4x^{2}\right) y(\xi) d\xi.$$

17. Show that the eigenfunctions of a symmetric kernel, corresponding to different eigenvalue are orthogonal.

 $(6 \times 2 = 12 \text{ weightage})$ 

### Part C

 $Answer\ any\ {\bf two}\ questions.$  Each question carries a weightage of 5.

- 18. State and prove the existence theorem for quasilinear first order partial differential equations.
- 19. For the problem  $u_{tt} 4u_{xx} = 0, -\infty < x < \infty, t > 0$  with initial conditions :

$$u(x,0) = f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

$$u_t(x,0) = \begin{cases} 4, & 1 \le x \le 2 \\ 0, & \text{otherwise.} \end{cases}$$

(a) Find u(x, 1).

3 **D** 51311

- (b) Find  $\lim_{t\to\infty} u(5,t)$ .
- (c) Find the set of all points where the solution is singular.
- (d) Find the set of all points where the solution is continuous.
- 20. Derive Poisson's formula.
- 21. Determine the resolvent kernel of  $y(x) = 1 + \lambda \int_{0}^{1} (1 3\xi) y(\xi) d\xi$  where  $k(x, \xi) = 1 3x\xi$  for what value of  $\lambda$  the solution does not exists. Obtain the solution of the above integral equation.  $(2 \times 5 = 10 \text{ weightage})$