D 51315 (Pages : 3) Name..................................... Reg. No..................................

THIRD SEMESTER M.Sc. (CBCSS) [REGULAR/SUPPLEMENTARY] DEGREE EXAMINATION, NOVEMBER 2023 1143

Mathematics

MTH 3E 04—PROBABILITY THEORY

(2019 Admission onwards)

Time : Three Hours and the Maximum : 30 Weightage Maximum : 30 Weightage

Part A

Answer **all** *questions. Each questions carries a weightage of* 1*.*

- 1. If X is a random variable, show that $aX + b$ is also a random variable.
- 2. If $g(X)$, is a non-negative Borel function of the r.v. X, then prove that

$$
P(g(X) \geq \epsilon) \leq \frac{E(g(X))}{\epsilon}, \text{ if } E(g(X)) < \infty.
$$

- 3. State the Jensen's inequality, mentioning the necessary conditions.
- 4. For a r.v. X if $\mu'_r < \infty$ then prove that $\mu'_s < \infty$, for $0 < s < r$; r & s are integers.
- 5. Define conditional expectation of random variables.
- 6. If $X_1, X_2, ..., X_n$ are iid random variables having uniform distribution in $(0, \theta)$, obtain the marginal p.d.f of $\boldsymbol{\mathrm{X}}_{\left(1\right)}$ and $\boldsymbol{\mathrm{X}}_{\left(n\right)}$.

7. Say True or False. $X_n \xrightarrow{a.s} X \leftrightarrow \lim_{n \to \infty} P \left[\text{Sup} |X_m - X| \geq \epsilon \right] = 0, \forall \epsilon > 0.$ $\underbrace{a.s}_{n\to X}$ \leftrightarrow $\lim_{n\to\infty} P\left[\frac{\text{Sup}|X_m - X|}{\geq \epsilon}\right] = 0, \forall \epsilon$

8. Examine whether the WLLN holds for the sequence of independent rvs ${X_n, n \geq 1}$ distributed as $P[X_n = \pm 2n] = 2^{-(2n+1)}$, $P[X_n = 0] = 1 - 2^{-2n}$. **Fart A**
 11. If X is a random variable, show that $\alpha X + b$ is also a random variable.

2. If $g(X)$, is a non-negative Borel function of the r.v. X, then prove that
 $P(g(X) \ge \epsilon) \le \frac{E(g(X))}{\epsilon}$, if $E(g(X)) < \infty$.

3. State the 8. Examine whether the WLLN holds for the sequence of ir
distributed as $P[X_n = \pm 2n] = 2^{-(2n+1)}$, $P[X_n = 0] = 1 - 2^{-2n}$.
Part B
Answer any six questions choosing two from each
Each question carries a weightage of 2.
Uni

 $(8 \times 1 = 8$ weightage)

Part B

Answer any **six** *questions choosing two from each unit. Each question carries a weightage of* 2*.*

Unit I

9. Prove that X is a non-negative r.v. having distribution function $F_X(x)$, with $E(X) < \infty$, if and

only if
$$
\int_{0}^{\infty} (1 - F_X(x) dx) < \infty
$$
 and then $E(X) = \int_{0}^{\infty} (1 - F_X(x)) dx$.

Turn over

- 10. Show that the characteristic function φ(*t*) of a r.v is uniformly continuous on R. Also examine whether $\phi(t) = \log (1 + t)$ is a characteristic function.
- 11. State and prove the Hölder's inequality, mentioning the assumptions to be satisfied. When will it reduce to the Cauchy-Schwartz inequality?

Unit II

- 12. Show that $\mu_{X,Y}^2 \leq \sigma_X^2 \sigma_Y^2$, where $\mu_{X,Y}^2$ is the bivariate central moment of order 2 of the random vector (X, Y) . **430290**

2 **13135**

characteristic function $\phi(t)$ of a r.v is uniformly continuous on R. Also examine

log $(1+t)$ is a characteristic function.

ve the Hölder's inequality, mentioning the assumptions to be satisfied. Wh
- 13. Establish the linearity property of conditional expectation.
- 14. Let $X_{(1)}, X_{(2)},..., X_{(n)}$ be the order statistics from a population with absolutely continuous distribution function F. Derive the joint pdf of $X_{(r)}$ and $X_{(s)}$.

Unit III

- 15. Prove that : $X_n \longrightarrow X \longrightarrow X_n \longrightarrow X$. When is the converse true ? Use the following example to prove it. Let $\{X_n, n \geq 1\}$ be a sequence of r.vs such that $P(X_n = 0) = 1 - \frac{1}{n}, P(X_n = e^n) = \frac{1}{n}, n \ge 1.$ $= 0$) = 1 - $\stackrel{\perp}{\text{I}}$, P(X_n = eⁿ) = $\stackrel{\perp}{\text{I}}$, n \geq 13. Establish the linearity property of conditional expectation.

14. Let $X_{(1)}X_{(2)},...,X_{(n)}$ be the order statistics from a population with absolutely conti

distribution function F. Derive the joint pdf of $X_{(r)}$ and X
- 16. Consider the sequence of r.vs {X*i*} of independent r.vs with $\left|\mathbf{P}\right|\mathbf{X}_i = \frac{i}{1+i}$ = $\left|\mathbf{P}\right|\mathbf{X}_i = \frac{-i}{1+i}$ = $\frac{\log n}{2i}$ $\left[\frac{i}{\log i}\right]$ = $\left[\frac{\lambda_i - \overline{\log i}}{\log i}\right]$ = $\frac{\overline{\log i}}{2}$ $i \mid \mid \mid \mid \mathbf{b} \mid \mathbf{v} \mid \quad -i \mid \mid \log i$ $i \mid \cdot \cdot \cdot \cdot |$ $\log i \mid 2i$ $\left[X_i = \frac{i}{\log i} \right] = P \left[X_i = \frac{-i}{\log i} \right] = \frac{\log i}{2i}$ and $P[X_n = 0] = 1 - \frac{\log i}{i}$. $[1, 0] = 1 - \frac{\log e}{i}$. Examine if the sequence obeys WLLN. If not, mention when will it obey the WLLN.
- 17. (i) State and prove the Lindberg-Levy CLT.
	- (ii) Show that it is a special case of the Lindberge-Feller form of CLT.

 $(6 \times 2 = 12$ weightage)

Part C

Answer any **two** *questions. Each question carries a weightage of* 5*.*

18. Let 1 $P|X = 2^x| = \frac{0}{x}, x = 0, 1, 2, \ldots,$!
! $\left[x\right] = \frac{e^{-1}}{x}, x$ *x* $\left[X = 2^x \right] = \frac{e^{-1}}{x!}$, $x = 0, 1, 2, ...$, be the pmf of X. Find the MGF. Hence or otherwise obtain the moments. 17. (1) State and prove the Lindberg-Levy CLT.

(ii) Show that it is a special case of the Lindberge-Feller form
 Part C

Answer any **two** questions.

Each question carries a weightage of 5.

18. Let $P[X = 2^x] = \frac{e^{-1}}{x$

19. The joint pdf of two random variables X and Y is :

$$
f(x, y) = \begin{cases} 3(x + y); & 0 \le x, y \le 1 \\ 0; & \text{otherwise} \end{cases}
$$

Find (1) the marginal pdfs of X and Y, (2) the conditional pdfs, (3) conditional means, (4) conditional variances (5) Cov (X, Y) and the correlation co-efficient between X and Y.

- 20. If X and Y are independent rectangular varieties on $[0, 1]$, find the distribution of (i) X + Y, (ii) $X - Y$, (iii) $|X - Y|$.
- 21. Test whether for sequence ${X_n}$ of independent r.vs with $P[X_n = \pm 2^n] = \frac{1}{2},$ 2 $\left[X_n = \pm 2^n \right] = \frac{1}{2}$, obey the WLLN and SLLN. **430290**

3
 11430290
 12430290
 12430290
 12430290
 12430290
 12430290
 12430290
 124315
 124414
 124 21. Test whether for sequence $\{X_n\}$ of independent r.vs with $P[\frac{X_n = x^2}{] = \frac{1}{2}}$, obey the V and SLLN.

 $(2 \times 5 = 10$ weightage)

D 51315-A (Pages : 5) Name.....................................

Reg. No..................................

THIRD SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2023 1143

Mathematics

MTH 3E 04—PROBABILITY THEORY

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

[Improvement Candidates need not appear for MCQ part]

Time : 20 Minutes Total No. of Questions : 20 Maximum : 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination. [Improvement Candidates need not appear for MCQ part]
 1143
 1143 1143 1143 1243

MTH 3E 04—PROBABILITY THEORY

(Multiple Choice Questions for SDE Candidates)

- 1. If X and Y are two random variables with means \overline{X} and \overline{Y} respectively, then the expression
	- $\mathop{\rm E}\nolimits\Bigl[\bigl(\rm X \overline{\rm X} \bigr)\bigl(\rm Y \overline{\rm Y} \bigr)\Bigr] \,\,\rm is\,\, called:$
		- (A) Variance of X. (B) Variance of Y.
		- (C) Cov (X, Y) . (D) Moments of X and Y.
- 2. The random variables X and Y have variances 0.2 and 0.5 respectively. Let $Z = 5X 2Y$. The variance of Z is : **430290**
 2
 11413 D 51315-A

MTH 3E 04-PROBABILITY THEORY

(Multiple Choice Questions for SDE Candidates)

two random variables with means \overline{X} and \overline{Y} respectively, then the expression
 \overline{Y}) is called 2. In familiar variables A and 1 have variances 0.2 and 0.5 respectively. Let $u = 5x - 2$.

variance of Z is :

(A) 3. (B) 7.

(C) 4. (D) 5.

3. The weight of persons in a country is a r.v. of the type :

(A) Continuous r.
	- (A) 3. (B) 7.
	- (C) 4. (D) 5.
- 3. The weight of persons in a country is a r.v. of the type :
	- (A) Continuous r.v.
	- (B) Discrete r.v.
	- (C) Neither discrete nor continuous.
	- (D) Discrete as well as continuous.
- 4. If X is a random variable, $\mathbb{E}\big(e^{itx}\big)$ is known as :
	- (A) Characteristic function.
	- (B) Moment generating function.
	- (C) Probability generating function.
	- (D) All the above.
- 5. In the continuous case, $P(X = a)$ is :
	- (A) 1. (B) ∞.
	- (C) 0. (D) None of the above.
- 6. Consider a r.v X that takes values +1 and 1 with probability 0.5 each. The values of the distribution function $F(x)$ at $x = -1$ and $x = 1$ are : **1143**
	- (A) 0 and 0.5. (B) 0 and 1.
	- (C) 0.5 and 1. (D) 0.25 and 0.75.

3 **D 51315-A**

- 7. Two random variables X and Y are said to be independent if :
	- (A) $E(XY) = 1.$ (B) $E(XY) = 0.$
	- (C) $E(XY) = E(X)E(Y)$. (D) $E(XY) = any constant value$.
- 8. A discrete r.v has probabilty mass function $p(x) = kq^x p$, $p + q = 1$, $x = 2,3,4, ...$ the value of *k* should be equal to : **430290**
 11430290
 11430290
 12430290
 12430290
 12430290
 12430290
 12444
 124
	- (A) $1/q^2$. (B) 1/*p*.
	- (C) 1/*q*. (D) 1/*pq*.
- 9. If X is a random variable which can take only non-negative values, then :
- (A) $E(X^2) = [E(X)]^2$. $E(X^2) = [E(X)]^2$. (B) $E(X^2) \ge [E(X)]^2$. 9. If X is a random variable which can take only non-negative values, then :

(A) $E(X^2) = [E(X)]^2$.

(B) $E(X^2) \ge [E(X)]^2$.

(C) $E(X^2) \le [E(X)]^2$.

(D) None of the above.

10. A r.v is a —— function.

(A) Continuous.

(C) Real
	- (C) $E(X^2) \leq [E(X)]^2$. (D) None of the above.
- 10. A r.v is a ———— function.
	- (A) Continuous. (B) Discrete.
	- (C) Real valued. (D) None of the above.

11. The outcomes of tossing a coi three times are a variable of the type :

- (A) Continuous r.v.
- (B) Discrete r.v.
- (C) Neither discrete nor continuous.
- (D) Discrete as well as continuous.

12. If X is a continuous r.v., $P(a \le x \le b)$ ———.

(A) $F(a) - F(b)$. (B) $F(a) * F(b)$. (C) $F(b) - F(a)$. (D) None of the abve. 12. If X is a continuous r.v., $P(a \le x \le b)$

(A) $F(a) - F(b)$.

(B) $F(a) * F(b)$.

(D) None of the abve.

13. A continuous r.v X has pdf $f(x) = kx, 0 < x < 1$, the value of $k =$

(A) 3.

13. A continuous r.v X has pdf $f(x) = kx, 0 < x < 1$, the value of $k =$ ———.

- (A) 3. (B) 2.
- (C) 1. (D) 4.
- 14. If $V(x) = 1$, then $V(2x \pm 3)$ is :
	- (A) 5. (B) 13.
		- (C) 4. (D) 10.

Turn over

4 **D 51315-A**

15. If X and Y are independent, then Cov $(X, Y) =$

- (A) 1. (B) 0.
- (C) 2. (D) None of the above.
- 16. Let (X, Y) be an RV of the discrete type, then conditional PMF of X, given $Y = y_j$ defined as : **430290**

independent, then Cov (X, Y) = ______.

(B) 0.

(D) None of the above.

an RV of the discrete type, then conditional PMF of X, given Y = y_j defined
 $y_j |X = x_i$ } = $\frac{P(X = x_i, Y = y_j)}{P(Y = y_j)}$.
 $y_j |X = x_i$ } = $\frac{P(X = x$

$$
(A) \quad P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)}.
$$

(B)
$$
P{Y = y_j | X = x_i} = {P(X = x_i, Y = y_j) \over P{X = x_i}}
$$
.

(C)
$$
P(X = x_i | Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)}.
$$

$$
(D) \tP\left\{X = x_i \middle| Y = y_j\right\} = \frac{P(X = x_i, Y = y_j)}{P\left\{X = x_i\right\}}.
$$

17. Let (X, Y) be an RV of the continuous type, then conditional PDF of X, given $Y = y$ defined as :

(B)
$$
P{Y = y_j | X = x_i} = \frac{P(X = x_i, Y = y_j)}{P{X = x_i}}
$$

\n(C) $P{X = x_i | Y = y_j} = \frac{P(X = x_i, Y = y_j)}{P{Y = y_j}}$
\n(D) $P{X = x_i | Y = y_j} = \frac{P(X = x_i, Y = y_j)}{P{X = x_i}}$
\n17. Let (X, Y) be an RV of the continuous type, then conditional PDF of X, given Y = y d as:
\n(A) $f_{XY}(x | y) = \frac{f(x, y)}{f_2(y)}$.
\n(B) $f_{Y/X}(y | x) = \frac{f(x, y)}{f_2(y)}$.
\n(C) $f_{XY}(x | y) = \frac{f(x, y)}{f_1(x)}$.
\n(D) $f_{Y/X}(y | x) = \frac{f(x, y)}{f_1(x)}$.

(C)
$$
f_{\text{XY}}(x | y) = \frac{f(x, y)}{f_1(x)}
$$
. (D) $f_{\text{Y/X}}(y | x) = \frac{f(x, y)}{f_1(x)}$.

18. If $Var(Y) = 6$, then $Var(2Y-4) =$

(A) 8. (B) 16.

- (C) 20. (D) 24.
- 19. For any real numbers *a* and *b*, $a \leq b$, the probability density function of a continuous RV X is given by

\n- (C)
$$
f_{XY}(x | y) = \frac{f(x, y)}{f_1(x)}
$$
.
\n- (D) $f_{Y/X}(y | x) = \frac{f(x, y)}{f_1(x)}$.
\n- 18. If $Var(Y) = 6$, then $Var(2Y - 4) =$
\n- (A) 8.
\n- (B) 16.
\n- (C) 20.
\n- (D) 24.
\n- 19. For any real numbers a and b , $a \leq b$, the probability density function of a c is given by lim_{a} .
\n- (A) $P\{a \leq X \leq b\} = \int_{a}^{b} f(x) dx$.
\n- (B) $P\{a \geq X \geq b\} = \int_{a}^{b} f(x) dx$.
\n- (C) (a) $P\{a \leq X \leq b\} = 1 - \int_{a}^{b} f(x) dx$.
\n- (D) (a) $P\{a \leq X \leq b\} = \int_{a}^{b} f(x) dx - 1$.
\n- **430290**
\n

5 **D 51315-A**

20. For a given probability distribution

$$
f(x) = \frac{1}{8}3C_x, x = 0, 1, 2, 3,
$$

the moment generating function of X is ————.

- (A) $\frac{1}{8} (1 + e^t)^3$. 8 $+ e^t \Big)^3$ (B) $\frac{1}{4}e^t$. 4 *t e* **1143**
- (C) $(1+e^t)^2$. (D) *e t* . **1143**