FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Mathematics

MTH4C15—ADVANCED FUNCTIONAL ANALYSIS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.
Each question carries a weightage 1.

- 1. Define the Spectrum of a bounded operator and explain its classifications.
- 2. If X is infinite dimensional, show that the identity operator on X is not compact.
- 3. Show that the eigen vectors of a self adjoint operator corresponding to distinct eigen values are orthogonal.
- 4. Let $\varphi(t) \in K[a, b]$. Then show that there exists a sequence of polynomials $P_n(t) \searrow \varphi(t)$ as $n \to \infty$ for all $t \in [a, b]$.
- 5. Define closed graph operator and give an example.
- 6. Define Schauder basis and give an example.
- 7. If X^* is a seperable space, then show that X is also seperable.
- 8. Define Banach Algebra and give an example.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each module. Each question carries a weightage 2.

Module I

9. Let T be a compact operator on X and $\lambda \neq 0$. Then show that Δ_{λ} is a closed subspace of X.

Turn over

2 C 42021

- 10. Let H be a seperable Hilbert space and T be a non-zero compact self-adjoint operator on H. Show that there exist an orthonormal basis consisting of eigen vectors of T.
- 11. Find the spectrum of the operator K on L² [0,1] given by $(K f)(t) = \int_0^1 k(t,s) f(s) ds$, where

$$k(t,s) = \begin{cases} 1, & s \le t \\ 0, & s > t \end{cases}$$

Module II

- 12. P be a projection on a Hilbert space H. Show that P is self-adjoint if and only if ker (P) \perp Im (P).
- 13. Define Strong convergence of sequence of operators. Also show that strong limit of a sequence of orthoprojections is an orthoprojection.
- 14. Let $P_n(t)$ and $Q_n(t)$ be sequences of polynomials. Assume that for all

$$t\in [m,\mathrm{M}], \mathrm{Q}_n\left(t\right)\searrow \psi\left(t\right)\in \mathrm{K} \text{ and } \mathrm{P}_n\left(t\right)\searrow \phi\left(t\right)\in \mathrm{K}. \text{ Let } \psi\left(t\right)\leq \phi\left(t\right) \text{ for all } t\in [m,\mathrm{M}]. \text{ Then show that } \lim_{n\to\infty}\mathrm{Q}_n\left(\mathrm{A}\right)=:\mathrm{B}_1\leq \mathrm{B}_2:=\lim_{n\to\infty}\mathrm{P}_n\left(\mathrm{A}\right).$$

Module III

- 15. State and prove the Banach Open Mapping Theorem.
- 16. Define Sublinear functional and show that the Minkowski functional is sublinear.
- 17. State and prove Gelfand's theorem on maximal ideals.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage 5.

- 18. (i) Let T be a compact operator on $X,\; \lambda \neq 0.$ Show that $\Delta_{\lambda} = X \Rightarrow Ker\; T_{\lambda} = 0.$
 - (ii) Define *Voltera operator* T and show that $1 \notin \sigma_p(T)$.
- 19. State and prove minimax principle.

C 42021

20. Show that a sequence of operators $T_n \in L(X, Y)$ converges strongly to an operator $T \in L(X, Y)$ if and only if:

3

- (i) The sequence $\{T_n(x)\}$ converges for any x from a dense subset of X,
- (ii) There exist C > 0 such that $\|T_n\| \le C$
- 21. (i) Let $K \subset X$ be a convex set. Then show that K is norm closed if and only if K is ω -closed.
 - (ii For a real Banach space X, show that the unit ball $\mathcal{D}(X^*) = \{f \in X^* \mid |f| \le 1\}$ is a compact set in the ω^* —topology.

 $(2 \times 5 = 10 \text{ weightage})$