C 42026

Nan	1e	 	 •••••

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Mathematics

MTH4E08—COMMUTATIVE ALGEBRA

(2019 Admission onwards)

Time : Three Hours

Maximum Weightage : 30

Part A

Answer **all** questions. Each question has weightage 1.

- 1. Find all units in the ring \mathbb{Z}_6 of integers mod 6.
- 2. Find the nilradical of the ring \mathbb{Z}_{12} of integers mod 12.
- 3. Let \mathbb{Z}_{10} be an \mathbb{Z} -module under the usual action. Verify whether N = {0, 4, 8} is a submodule of \mathbb{Z}_{10} .
- 4. Let S⁻¹A be a ring of fractions and $f : A \to S^{-1}A$ be the natural inclusion homomorphism. Show that for some $a \in A$ if f(a) = 0 then as = 0 for some $s \in S$.
- 5. Let \mathbb{Z} be the ring of integers and $S = \{3^n : n \ge 0\}$. Verify whether 4/6 is in $S^{-1}\mathbb{Z}$.
- 6. Give a factorizations of 6 into irreducibles in $\mathbb{Z}(\sqrt{-5})$ other than $6 = 3 \times 2$.
- 7. Verify whether $\sqrt{2}$ is integral over \mathbb{Z} in the field \mathbb{R} of reals.
- 8. Show that the ring \mathbb{Z} of integers does not have d.c.c. on ideals.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit. Each question has weightage 2.

Unit I

- 9. Show that every nonzero prime ideal in a principal ideal domain is a maximal ideal.
- 10. Let M, N be , A-modules and $f: M \to N$ be an A-module homomorphism. Show that ker f is a submodule of M and Im f is a submodule of N.
- 11. Show that $0 \to M' \xrightarrow{f} M$ is an exact sequence if and only if *f* is injective.

Turn over

376827

C 42026

Unit II

- 12. Let \mathbb{Z} be the ring of integers and $S = \{p^n : n \ge 0\}$ where p is a prime. Find all units in $S^{-1}\mathbb{Z}$.
- 13. Let M, N be A-modules and $\phi: M \to N$ be an , A-module homomorphism. Show that if ϕ is injective then $\phi_p: M_p \to N_p$ is injective for all prime ideals P of A.
- 14. Let q be a *p*-primary ideal in a ring A. Show that if $x \notin q$ then r(q:x) = p.

Unit III

- 15. Let A be a subring of a ring B such that B is integral over A. Let b be an ideal of B and $a = b \cap A$. Show that B/b is integral over A/a.
- 16. Let A be a subring of B and C \subseteq B be the integral closure of A in B and S be a multiplicatively closed subset of A. Show that S⁻¹C is the integral closure of S⁻¹A in S⁻¹B.
- 17. Let $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ be an exact sequence of A-modules. Show that if M is Artinian

then M' and M'' are Artinian.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 5.

18. (a) Define local ring.

- (b) Verify whether \mathbb{Z}_8 is a local ring.
- (c) Let A be a ring and m be a maximal ideal of A such that every element of A m is a unit. Show that A is a local ring.
- 19. (a) Define flat A-module.
 - (b) Show that the following are equivalent for an A-module N.
 - (i) N is flat.
 - (ii) If $0 \to M' \longrightarrow M \longrightarrow M'' \to 0$ be any exact sequence of A-modules then the tensored sequence.
 - $0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$ is also exact.

20. (a) Let S be a multiplicatively closed subset of a ring A and q be a p-primary ideal of A. Show that :

i. if $S \cap p \neq \theta$ then $S^{-1}q = S^{-1}$	А
--	---

- ii. if $S \cap p = \theta$ then $S^{-1}q$ is $S^{-1}p$ primary.
- (b) Let q_1, q_2 be *p*-primary ideals of a ring A. Show that $q_1 \cap q_2$ is also *p*-primary.
- 21. (a) Define Noetherian module.
 - (b) Show that if k is a field then the polynomial ring k[x] is Noetherian.
 - (c) Let M be an A-module. Prove that M is Noetherian if and only if M is finitely generated.

 $(2 \times 5 = 10 \text{ weightage})$