376941

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023 1143

(CBCSS)

Mathematics

MTH 4E 09—DIFFERENTIAL GEOMETRY

(2019 Admission onwards)

Time : Three Hours Maximum : 30 Weightage

Part A

Answer **all** *questions. Each question has weightage* 1.

- 1. Sketch level sets of the function $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ at heights 0, and 4.
- 2. Sketch the following vector field on \mathbb{R}^2 : $X(p) = (p, X(p))$ where $X(x_1, x_2) = (x_2, x_1)$.
- 3. Define Gauss map. Illustrate with an example.
- 4. Define geodesic. Show that geodesics have constant speed.
- 5. Define Levi-Civita parallel vector field. Show that if X and Y are Levi-Civita parallel vector fields along α , then X · Y is constant along α . **1143 1143 1143 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1243 1244 1243 1244 12443 12444 12444 12444 12444 12444 12444 12444 12444 12444 12444 12444 24544**
- 6. Find the normal curvature of $-x_1^2 + x_2^2 + x_3^2 = 1$ at a point on the surface in the direction of *v*. 6. Find the normal curvature of $-x_1^2 + x_2^2 + x_3^2 = 1$ at a point on the sum.
 1143 T. Define parametrized *n*-surface in \mathbb{R}^{n+k} , $k \ge 0$.
 1143 S. Define (i) Differential 1-form, and (ii) Exact 1-form.
 376941
	- 7. Define parametrized *n*-surface in \mathbb{R}^{n+k} , $k \geq 0$.
	- 8. Define (i) Differential 1-form ; and (ii) Exact 1-form.

 $(8 \times 1 = 8$ weightage)

Turn over

376941

Part B

Answer **six** *questions choosing* **two** *from each module. Each question has weightage* 2.

MODULE I

- 9. Find the integral curve through $p = (1,1)$ of the vector field on \mathbb{R}^2 given by $X(p) = (p, X(p))$ where $X(p) = (0, 1)$. **376941**

2 C 42027

Part B

Answer six questions choosing two from each module.

Each question has weightage 2.

MODULE I

egral curve through $p = (1,1)$ of the vector field on \mathbb{R}^2 given by

(i)) where $X(p) = (0,1)$.
- 10. Let $S = f^{-1}(c)$ be an *n*-surface in \mathbb{R}^{n+1} , where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in S$, and let X be a smooth vector field on U whose restriction to S is a tangent vector field on S. If α : I \rightarrow U iS any integral curve of X such that $\alpha(t_0) \in S$ for some $t_0 \in I$, then prove that $\alpha(t) \in S$ for all $t \in I$. 10. Let $S = f^{-1}(c)$ be an *n*-surface in \mathbb{R}^{n+1} , where $f: U \to \mathbb{R}$ is such that $\nabla f(q) \neq 0$ for all $q \in \mathbb{R}$

let X be a smooth vector field on U whose restriction to S is a tangent vector field on S .
- 11. Describe the spherical image, when $n = 1$ and when $n = 2$, of the surface

 $x_1^2 + \dots + x_{n+1}^2 = 1$

oriented by *f f* ∇ $\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \, dx \text{ where } f \text{ is the function defined by } f(x_1, \ldots, x_n) = x_1^2 + \ldots + x_{n+1}^2.$

MODULE II

- 12. Find the velocity, the acceleration, and the speed of the parametrized curve $\alpha(t) = (\cos t, \sin t, t).$
- 13. Evaluate the Weingarten map L_p for $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 .
- 14. Let S be an *n*-surface in \mathbb{R}^{n+1} , let p, $q \in S$, and let α be a piecewise smooth parametrized curve from *p* to *q*. Then prove that parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot products. 13. Evaluate the Weingarten map L_p for $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 .

14. Let S be an *n*-surface in \mathbb{R}^{n+1} , let p, $q \in S$, and let α be a piecewise

from p to q. Then prove that parallel transport $P_\alpha : S_p \$

376941

MODULE III

- 15. Let V be a finite dimensional vector space with dot product and let $L: V \rightarrow V$ be a self-adjoint linear transformation on V. Let $S = \{v \in V : v \cdot v = 1\}$ and define $f : S \to \mathbb{R}$ by $f(v) = L(v) \cdot v$. Suppose *f* is stationary at $v_0 \in S$. Then prove that $L(v_0) = f(v_0) v_0$. **376941**

3 C 42027

Mobute III

te dimensional vector space with dot product and let $L: V \rightarrow V$ be a self-adjoint

nation on V. Let $S = \{v \in V : v \cdot v = 1\}$ and define $f : S \rightarrow \mathbb{R}$ by $f(v) = L(v) \cdot v$. Suppose

to₀ \in S. Then
- 16. Find the Gaussian curvature $K : S \to \mathbb{R}$ where S is the hyperboloid

$$
\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2} = 1.
$$

17. State and prove inverse function theorem for *n*-surface.

 $(6 \times 2 = 12$ weightage)

Part C

Answer **two** *questions. Each question has weightage* 5.

- 18. (a) Let U be an open subset in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of *f,* and let $c = f(p)$. Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal $\mathop{\hspace{0.05cm}\rm to}\hspace{0.05cm}\left[\nabla\!f\left(\,p\right)\right]^{\perp}.$ $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2} = 1.$

17. State and prove inverse function theorem for *n*-surface.
 1143 (6 × 2 = 12 weig
 1244 C

Answer **two** questions.
 Each question has weightage 5.

13. (a) Let U be
	- (b) Prove that the gradient of f at $p \in f^{-1}(c)$ is orthogonal to $f^{-1}(c)$ at p .
- 19. Let C be an oriented plane curve. Then prove that there exists a global parametrization of C if and only if C is connected.
- 20. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $p \in S$, and let $v \in S_p$. Then prove that there exists an open interval I containing 0 and a geodesic $\alpha : I \rightarrow S$ such that : 19. Let C be an oriented plane curve. Then prove that there exists a glob

only if C is connected.

20. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $p \in S$, and let $v \in S_p$. Then pr

interval I containing 0 and a geod
	- (i) $\alpha(0) = p$ and $\dot{\alpha}(0) = v$.
	- (ii) If $\beta : \tilde{I} \to S$ is any other geodesic in S with

 $\beta(0) = p$ and $\dot{\beta}(0) = v$, then $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{I}$.

Turn over

376941

4 **C 42027**

21. (a) Let S be an oriented *n*-surface in \mathbb{R}^{n+1} and let $p \in S$. Let Z be any non-zero normal vector

field on S such that $N = \frac{Z}{\|Z\|}$ and let $\{v_1, \dots, v_n\}$ $\frac{Z}{Z}$ and let $\{v_1, \ldots, v_n\}$ be any basis for S_p . Then prove that

Let S be an oriented *n*-surface in
$$
\mathbb{R}^{n+1}
$$
 and let $p \in S$. Let Z be any non-zero normal vector
field on S such that $N = \frac{Z}{\|Z\|}$ and let $\{v_1, \dots, v_n\}$ be any basis for S_p . Then prove that

$$
K(p) = (-1)^n \det \begin{pmatrix} v_{v_1}Z \\ \vdots \\ v_{v_n}Z \\ Z(p) \end{pmatrix} / \|Z(p)\|^n \det \begin{pmatrix} v_1 \\ \vdots \\ v_n \\ Z(p) \end{pmatrix}.
$$

(b) Let S_1 be an *n*-surface in \mathbb{R}^{n+1} and let S_2 be an *m*-surface in \mathbb{R}^{m+1} . Suppose $\varphi: S_1 \to \mathbb{R}^{m+1}$ is a smooth map such that $\varphi(S_1) \subset S_2$. Show that $d\varphi = T(S_1) \to T(S_2)$. (b) Let S_1 be an *n*-surface in \mathbb{R}^{n+1} and let S_2 be an *m*-surface in \mathbb{R}^{m+1} . Suppose $\varphi : S_1 \rightarrow$
is a smooth map such that $\varphi(S_1) \subset S_2$. Show that $d\varphi = T(S_1) \rightarrow T(S_2)$.
(2 × 5 = 10 weig

 $(2 \times 5 = 10$ weightage)