C 42804	(Pages: 3)	Name
		Reg. No

SECOND SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2023

(CBCSS)

Physics

PHY 2C 08—COMPUTATIONAL PHYSICS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

8 Short questions answerable within 7.5 minutes. Answer all questions, each question carries 1 weightage.

- 1. What are the collection data types in python programming?
- 2. Explain formatted printing in python.
- 3. Give the python method to convert a string in to a lower case.
- 4. Write a python program to draw a line from position (1,1) to position (5,8).
- 5. Explain spline interpolation.
- 6. What is meant by the order of Runge-Kutta method?
- 7. Write a NumPy program to generate the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$.
- 8. What is forward Euler method?

 $(8 \times 1 = 8 \text{ weightage})$

Section B

4 essay questions answerable within 30 minutes. Answer any **two** questions, each question carries 5 weightage.

- 9. Derive a general formula for numerical integration and hence establish Trapezoidal rule.
- 10. Give the principle of least squares. Explain the method of fitting a straight line to a given set of data (x_i, y_i) .

Turn over

2 C 42804

- 11. Explain the Discrete Fourier Transform method for aperiodic functions.
- 12. Write a python program to obtain the trajectory of a projectile motion using Euler method.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

7 problems answerable within 15 minutes. Answer any **four** questions, each question carries 3 weightage.

13. Write a Python program to solve a quadratic equation of the form:

$$ax^2 + bx + c = 0$$
; $a, b, c > 0$.

- 14. Write a Python program to produce a plot of the first six Bessel functions using Numpy and Matplotlib.
- 15. Using Newton's forward difference formula, find the sum

$$S_n = 1^3 + 2^3 \dots \dots + n^3$$

16. Using Simpson's rule, evaluate

$$I = \int_0^1 \frac{1}{1+x} dx$$

correct to three decimal places. (Take h = 0.5 and 0.25).

17. A function f(x) is given by the table of values. Approximate the area under the curve y = f(x), between x = 0 and x = 8 using the trapezoidal rule with n = 4 subintervals.

X	f(x)
0	3
2	7
4	11
6	9
8	3

383218

3 C 42804

18. Using the Runge-Kutta method of fourth order, evaluate the value of y(0.2) correct to four decimal places for the function :

$$\frac{\partial y}{\partial x} = \frac{x - y}{2}$$
; $x_0 = 0$; $y_0 = 1$; $h = 0.1$.

19. Explain the Monte Carlo simulation method to estimate the value of π .

 $(4 \times 3 = 12 \text{ weightage})$