D 51328	(Pages : 2)	Name
		Reg No

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2023

(CBCSS)

Physics

PHY 3C 09—QUANTUM MECHANICS—II

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer all questions, each question carries weightage 1.

- 1. The WKB is valid for systems in which the potential is slowly varying. Why?
- 2. Briefly discuss hyperfine splitting.
- 3. Briefly explain Rayleigh Ritz method.
- 4. What is spin orbit interaction?
- 5. The result of variation method always gives an upper limit for the ground state energy of the system. Why?
- 6. What are partial waves?
- 7. Discuss the validity of Born approximation.
- 8. Define helicity operator. What are the eigen values of helicity operator?

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any two questions, each question carries weightage 5.

- 9. Write an essay on Zeeman effect.
- 10. Explain WKB approximation. Obtain connection formulae.

Turn over

2 **D** 51328

- 11. Distinguish between spontaneous and stimulated emission. Prove that spontaneous emission is completely a quantum effect.
- 12. Derive the Dirac equation for a free particle. Find out the Dirac matrices. Obtain the Dirac equation in covariant form.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

Answer any four questions, each question carries weightage 3.

- 13. Write a note on two fold degeneracy using degenerate perturbation theory.
- 14. Estimate the ground state energy of a one dimensional harmonic oscillator of mass m and angular frequency ω using a Gaussian trial function.
- 15. Obtain the transition probability for a constant perturbation.
- 16. Write a note on stark effect in hydrogen atom.
- 17. Obtain the Hamiltonian operator for a charged particle in an electromagnetic field.
- 18. Explain how Klein Gordon equation leads to positive and negative probability density values.
- 19. What is scattering amplitude? How is it related to scattering cross section?

 $(4 \times 3 = 12 \text{ weightage})$