D 51330	(Pages : 2)	Name
		Reg. No

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2023

(CBCSS)

Physics

PHY 3C 11—SOLID STATE PHYSICS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer all questions.

Each question carries weightage 1.

- 1. Distinguish between para and ferromagnetism.
- 2. What are symmetry operations? Name the symmetry elements of a crystal.
- 3. What are Miller indices?
- 4. Give example of material exhibiting SC and BCC structure.
- 5. Briefly explain Hall effect.
- 6. Distinguish between Type I and Type II superconductors.
- 7. What do you meant by indirect band gap semiconductors?
- 8. Discuss the ferroelectric and paraelectric states.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **two** questions.

Each question carries weightage 5.

- 9. Give an account of the phenomenon of superconductivity. Distinguish between Type I and Type II superconductors. List out few applications of superconductors.
- 10. Discuss the formation of allowed and forbidden energy bands on the basis of the Kronig Penny model.

Turn over

2 **D 51330**

- 11. Describe the Einstein model of lattice heat capacity. Discuss the success and failure of this model at different temperatures.
- 12. Describe the Langevin's theory of paramagnetism and obtain an expression for paramagnetic susceptibility. Mention the temperature dependence of susceptibility.

 $(2 \times 5 = 10 \text{ weightage})$

Section C

Answer any **four** questions. Each question carries weightage 3.

- 13. A ferromagnetic material with J = 3/2 and g = 2 has a Curie temperature of 125 K. Calculate the intrinsic flux density near 0 K. Also, calculate the ratio of the magnetization at 300 K in the presence of an external field of 1 mT to the spontaneous magnetization at 0 K.
- 14. The critical fields at 6 K and 8 K for a NbTi alloy are 7.616×10^6 and 4.284×10^6 A/m respectively. Determine the transition temperature and the critical field at 0 K.
- 15. Two dimensional lattice has the basis vectors

 $a = 2\hat{x}, b = \hat{x} + 2\hat{y}$. Find the reciprocal lattice vectors.

- 16. The mobility of hole is μ_h = 0.025 m²/Vsec. What would be the resistivity of p-type silicon if the hall co-efficient of the sample is 2.25×10^{-5} m³/C?
- 17. The energy near the valence band edge of a crystal is given by $E = -Ak^2$, where $A = 10^{-39} \, \text{Jm}^2$. An electron with wave vector $k = 10^{10} \, k_x \, \text{m}^{-1}$ is removed from an orbital in the completely filled valence band. Determine the effective mass, velocity and momentum of the hole.
- 18. Derive the Clausius-Mossotti relation by considering the local field effects.
- 19. The unit cell volume of sodium is 7.93×10^{-29} m³. Calculate the Fermi energy of sodium at absolute zero

 $(4 \times 3 = 12 \text{ weightage})$