Q.P Code	D 113038	Total Pages: 3	Name
			Register No.
FIRST	SEMESTER	UG DEGREE EXAMI	NATION, NOVEMBER 2024
		(CUFYUGF	P)
	MA'	$\Gamma 1 \mathrm{MN} 105 ext{-}\mathrm{MATRIX}$	THEORY
		2024 Admission	ns
Maximum	Time :2 Hours		Maximum Marks :70

All	Question can be answered. Each Question carries 3 marks (Ceiling: 24 Marks)			
1	Determine whether the statement "If the number of equations in a linear system exceeds the num- ber of unknowns, then the system must be inconsistent." is true or false, and justify your answer.			
2	Find all values of k for which the augmented matrix $\begin{bmatrix} 3 & -4 & k \\ 4 & 8 & 2 \end{bmatrix}$ corresponds to a consistent linear system.			
3	Find the value of k , if $\begin{bmatrix} 16 & k \\ k & 4 \end{bmatrix}$ is nonsingular			
4	Using Row Operations to find A^{-1} , $A = \begin{bmatrix} 1 & 2 \\ 7 & 3 \end{bmatrix}$			
5	If $A = \begin{bmatrix} 3 & 5 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{bmatrix}$, then what can you say about the diagonal entries of A^{-1}			
6	Find all the minors and cofactors of the matrix $\begin{bmatrix} 3 & 6 & 2 \\ 0 & 9 & 8 \\ 12 & 0 & 3 \end{bmatrix}$			
7	Find the determinant of $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -5 & 7 \\ 0 & 6 & 3 & 5 \\ 0 & 0 & 0 & -11 \end{bmatrix}$			
8	Find the values of k for which the matrix A $\begin{bmatrix} 1 & k & 2 \\ 3 & 2 & k \\ 2 & 1 & 0 \end{bmatrix}$ is invertible.			
9	Let P be the point $(2, 3, -2)$ and Q the point $(7, -4, 1)$. Find the midpoint of the line segment connecting the points P and Q .			

Section B

All Question can be answered. Each Question carries 6 marks (Ceiling: 36 Marks))

		2	3	6	0	
11	Change the matrix	2	1	8	2	to reduced row echelon form
11	Change the matrix	1	0	2	4	to reduced fow echelon form
		3	2	4	0	

12 Solve the matrix equation for a, b, c and d

$$\begin{bmatrix} a-b & a+b \\ 3d+c & 2d-c \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$$

13 Solve by matrix method

$$5x_1 - 3x_2 = -1$$

$$2x_1 + x_2 = 3$$

14 Determine whether the homogeneous system has nontrivial solutions

$$4x + y + 2z = 0$$

$$-3x + 2y + 4z = 0$$

$$8x - y - 2z = 0$$

					<u>[0</u>	1	5]
15	Using Rov	w Reduction to ev	aluate	the determinant of	3	-6	9
					$\lfloor 2$	6	1

16 Without evaluating the determinants directly, show that

$$\begin{vmatrix} a_1 & b_1 & a_1 + b_1 + c_1 \\ a_2 & b_2 & a_2 + b_2 + c_2 \\ a_3 & b_3 & a_3 + b_3 + c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

- Find the area of the parallelogram determined by the vectors $\mathbf{u} = (3, -1, 4)$ and $\mathbf{v} = (6, -2, 8)$.
- Find the distance between the parallel planes 2x y z = 5 and -4x + 2y + 2z = 12

	Section C
	Answer any ONE. Each Question carries 10 marks (1x10=10 Marks))
19	Solve by Gaussian Elimination method
	$3x_1 + 3x_2 + 3x_3 = -3$
	$-x_1 - 5x_2 - 2x_3 = 3$
	$-4x_2 + x_3 = 0$
20	Let $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3), c = (c_1, c_2, c_3), \text{ and } d = (d_1, d_2, d_3).$ Show that
	$(a+d)(b \times c) = a(b \times c) + d(b \times c)$